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ADVANCES IN MAGNETIC RESONANCE

High-Resolution 1H NMR Spectroscopy in the Solid State: Very Fast
Sample Rotation and Multiple-Quantum Coherences
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In the past few years, solid-state 1H NMR spectroscopy under
fast magic-angle spinning (MAS) has developed into a versatile tool
for elucidating structure and dynamics. Dipolar multiple-quantum
(MQ), in particular double-quantum (DQ), MAS spectroscopy has
been applied to a variety of materials and provided unique insight,
e.g., into the structure of hydrogen-bonded systems. This review
intends to present solid-state 1H DQ and MQ MAS spectroscopy in
a systematic fashion with a particular emphasis on methodological
aspects, followed by an overview of applications. C© 2001 Academic Press

Key Words: proton solid-state NMR; fast magic-angle spinning;
multiple-quantum spectroscopy.
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1. INTRODUCTION

Their ubiquity in organic and inorganic materials, coup
with their high magnetogyric ratio, makes protons very imp
tant and valuable nuclei for NMR spectroscopy. In solution st
1H NMR spectroscopy therefore belongs to the standard m
ods routinely applied for material characterization. In the so
state, however, the combination of high spin density and h
magnetogyric ratio, which is advantageous as far as sensit
is concerned, turns into a disadvantage, because the spect
dominated by strong homonuclear dipolar interactions. In s
tion, these interactions are averaged out by the rapid isotr
motion of the molecules; however, in solids, dipolar couplin
with effective strengths of up to 50 kHz severely broaden
resonance lines. At such strengths, the dipolar interaction
passes, by about one order of magnitude, all1H chemical shield-
ing effects which are of vital importance for the identificati
of typical molecular building blocks (like aromatic rings, CH2,
CH3, etc.) and, in general, for substance characterization. U
now, this problem has prevented1H NMR spectroscopy from be
ing widely applied to solids. Therefore, new solid-state1H NMR
methods must, on the one hand, aim at the reduction of d
lar interactions, in order to reveal at least partially the chem
shift information, while, on the other hand, one would like to p
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serve the valuable information aboutintra- andintermolecular
proton–proton proximities and hence about the structure and
dynamics of the sample inherent to the proton–proton dipo
couplings. Consequently, the ideal approach will combine
formation about the identity of a molecular building block from
the chemical shift with the spatial distance and orientation
formation from dipolar interactions.

The standard approaches for resonance-line narrowing
solid-state NMR are based oncoherent averaging(51), the most
widely used method being magic-angle sample spinning (MA
(4, 5, 71). This, in principle, allows the removal of all anisotropi
interactions whose spatial parts can be represented as sec
rank tensors and contribute to the NMR frequency in first ord
only (1). Referring to the effect of MAS on anisotropic broade
ings, Maricq and Waugh distinguished between “homogeneo
and “inhomogeneous” interactions (72): under MAS, an inho-
mogeneously broadened line splits spontaneously into a pat
of sharp spinning sidebands, while homogeneously broade
lines successively narrow with increasing MAS frequencies,
lowing the observation of the underlying spinning-sideband p
tern only if the lines are sufficiently resolved. To date, MAS h
not been widely applied to rigid and dense1H systems, because
the homogeneous character of multispin homonuclear dipo
interactions seemed to necessitate MAS frequencies well ab
the effective coupling strength, which is, in most cases, s
beyond the current state-of-the-art technology.

A NMR approach, which instead of fighting the dipolar inte
action makes use of strongly dipolar-coupled networks, is dip
lar multiple-quantum (MQ) spectroscopy. The first MQ NM
experiments performed on rigid1H systems were so-called spin
counting experiments, which do not aim at resolving differe
1H species in the spectrum, but rather at determining the s
of dipolar-coupled spin clusters by exciting higher-order M
coherences (112, 8, 9, 101). In static samples, without requiring
spectral resolution, the intensity distribution over the differe
MQ orders allows the cluster size to be extracted (77, 80, 76).
3 1090-7807/01 $35.00
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Spectral site resolution can be achieved, at least in the final d
tion period of the experiment, by combining the spin-count
experiment with cross polarization to13C (7) or with MAS (40).
Moreover, introducing a MQ evolution period under fast MA
conditions between the excitation and reconversion period
the experiment allows resonance lines to be spectrally reso
and, hence, to be assigned to MQ coherences (42). Limiting
the MQ order or, equivalently, the minimum number of coup
spins to 2, leads to DQ spectroscopy, by use of which dipo
coupled networks can be analyzed in a pairwise manner
respect to the chemical shifts of the involved nuclei.

In order to interpret the first experimental DQ NMR resu
under fast MAS conditions, Gottwaldet al. proposed a spin
pair approach which describes the evolution of dipolar-coup
multispin systems approximately in the so-called “short ti
limit” ( 46, 41). Following the first applications to1H spin-pair
model systems,31P DQ MAS experiments were subsequen
performed on polycrystalline phosphates (32, 33, 24, 39, 6) and
phosphate glasses (34, 116). In addition, analogous29Si DQ
MAS experiments have also been performed on silicate gla
(44). Moreover, mobile systems have been investigated, w
e.g., the chain order and dynamics in polymers and elasto
having been quantified by homonuclear13C and1H DQ methods
(48–50). Focusing on methyl groups, triple-quantum (TQ) sp
troscopy was introduced (38) and, proceeding with the metho
beyond purely homonuclear systems, dipolar MQ NMR has b
extended to heteronuclear1H–13C pairs (103, 91, 92).

Recently available MAS equipment, allowing MAS to be p
formed at spinning frequencies of up to 35 kHz, has had m
impact on the development of dipolar MQ methods. Besi
providing a significant and vital resolution enhancement in1H
spectroscopy (98), it allowed the experimental verification of
full theoretical treatment of dipolar-coupled multispin syste
under fast MAS (35, 36). Based on a Floquet approach co
pled with Rayleigh–Schr¨odinger perturbation theory, the an
lytical treatment considers the evolution of a1H multispin sys-
tem, which is subject to both MAS and homonuclear dipo
interactions (35). It turns out that such a system develops s
cessively two-, three- and higher spin correlations, while M
suppresses the formation of these correlations with increa
efficiency as more spins become involved (36). In the limit of
fast MAS, the multispin system can therefore be considere
decompose into a superposition of two-spin correlations, the
ter being of inhomogeneous character (72). This dominant role
of two-spin correlations provides the basis for the spectrosc
of spin pairs, i.e., DQ spectroscopy.

This review intends to present solid-state1H MQ MAS spec-
troscopy in a systematic fashion with a particular emphasis
methodological aspects: It considers the experimental ex
tion and the properties of MQ coherences as well as the or
of MQ MAS spinning sideband patterns (46, 41, 37). The infor-
mation content of spectral features like signal intensities or M

sideband patterns is discussed, paying particular attention to
influence of perturbing spins. The physical insight provided
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this analysis is illustrated by first applications, which concentr
on the elucidation of phenomena inducing supramolecular or
namely hydrogen bonds andπ–π interactions between aromati
systems (97, 18). In addition to addressing structural problem
MQ MAS experiments are, due to their inherent multidime
sional form, particularly well suited to investigations of mole
ular dynamics, which are expected to be of major interest for f
ther NMR method developments as well as future applicatio

2. DIPOLAR-COUPLED SPIN SYSTEMS UNDER MAS

In this opening section, the dominant internal interactio
present in1H multispin systems, i.e., dipolar couplings an
isotropic chemical shielding effects, as well as some anal
cal formalisms necessary for describing the NMR experime
will be introduced. Since the technique of magic-angle spinn
is essential for1H NMR experiments in the solid state, we wi
consider its effect on the internal interactions and, in particu
present a theoretical approach which describes its decoup
effect on a dense network of dipolar-coupled spins. The res
form the basis for1H MQ MAS spectroscopy, which will be the
topic of Section 3.

2.1. The Dipolar and Quadrupolar Interactions

Due to the negligible overlap of the nuclear wavefunction
the direct spin–spin interactions between two nuclei with sp
I (i, j ) 6= 0 are limited to the dipolar interaction, the Hamiltonia
for which can be written as

Ĥ (i j )
D = Î (i ) · D(i j ) · Î ( j ), [1]

using a coupling tensorD(i j ) which is, in the principal axes
system (PAS) of the interaction, always of symmetrical form

D(i j ) = −2D(i j ) ·

−
1
2 0 0

0 − 1
2 0

0 0 1

 . [2]

The dipolar coupling constant is given by

D(i j ) = −µ0h-γi γ j

4πr 3
i j

, [3]

whereµ0 denotes the vacuum permeability, andγi, j are the
magnetogyric ratios of the interacting nucleii and j , andr i j is
their distance. Transformation into the laboratory frame (LA
with thez-direction defined by the external magnetic field,B0,
i.e., B0‖z, results in

Ĥ (i j )
D = −

µ0h-γi γ j

4π
·
[

3(Î (i ) · r i j )( Î ( j ) · r i j )

r 5
i j

− Î (i ) · Î ( j )

r 3
i j

]

the

by = D(i j ) · [ A+ B+ C + D + E + F ], [4]
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where the so-called “dipolar alphabet” (1) is given by

A = (1− 3 cos2 θ ) Î (i )
z · Î ( j )

z

B = 1

2
(1− 3 cos2 θ )

(
Î (i )

z · Î ( j )
z − Î (i ) · Î ( j )

)
C = −3

2
sinθ cosθe−iφ

(
Î (i )

z · Î ( j )
+ + Î (i )

+ · Î ( j )
z

)
[5]

D = −3

2
sinθ cosθeiφ

(
Î (i )

z · Î ( j )
− + Î (i )

− · Î ( j )
z

)
E = −3

4
sin2 θe−2iφ Î (i )

+ · Î ( j )
+

F = −3

4
sin2 θe2iφ Î (i )

− · Î ( j )
− .

The vectorr i j connects the coupled spinsi and j . In the
dipolar alphabet,r i j is expressed in terms of its polar coordinat
(ri j , θ, φ), describing the orientation ofr i j with respect to the
laboratory frame. The raising and lowering operatorsÎ ± are
defined aŝI ± = 1√

2
( Î x ± i Î y).

Nuclei with spin I ≥ 1 possess an electric quadrupole m
ment,Q, which interacts with the electric field gradient,V , at
the nucleus. The later can be represented by a tensor with
components

(V)αβ = ∂28

∂α∂β
, [6]

whereα, β = x, y, z, and8denotes the electric potential. Usin
this gradientV , the quadrupolar coupling tensor,Q, is then given
by

Q = eQ

2I (2I − 1)h-
· V, [7]

with I andeQ denoting the nuclear spin and the product of t
elementary chargee and quadrupole momentQ, respectively.
Using the coupling tensor,Q, the quadrupolar interaction ca
be written in the form

Ĥ Q = Î · Q · Î , [8]

whereQ, in the principal axes system of the interaction, is giv
by

Q = δ ·


− 1+ η

2 0 0

0 − 1− η
2 0

0 0 1

 . [9]
η andδ reflect the asymmetry and the anisotropy, respective
Q COHERENCES 155
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of the interaction, with the latter given by

δ = e2q Q

2I (2I − 1)h-
. [10]

The formal analogy of the dipolar and the quadrupolar int
action (Eqs. [1], [2] and [8], [9]) opens up the possibility of usin
the latter as anintranuclear analogue to theinternuclear dipolar
interaction. Hence, from an experimental point of view, it can
envisaged that certain quadrupolar systems will be well su
to serve as models for small dipolar-coupled spin systems. S
the dipolar interaction is always symmetric, this model appro
requires the field gradient tensor to be symmetric, i.e.,η = 0,
and, additionally, both interactions to be of the same orde
magnitude with respect to the dominating Zeeman interact
Dipolar systems virtually never exceed coupling strengths
about 50 kHz and, hence, a first-order secular approxima
is valid throughout, so that an analogous treatment of dip
and quadrupolar interactions is, from the outset, restricte
first-order quadrupolar systems. Therefore, the discussion
quadrupolar systems are, in this review, limited to weak a
symmetric couplings.

For the dipolar interaction, the secular part can be easily
rived from the dipolar alphabet using the fundamental sec
commutator [Ĥ Z, Ĥ D,sec] = 0. The secular part is obviousl
given by the termsA andB, because the termsC to F contain
operatorsÎ ±, which do not commute witĥI z of the Zeeman
interaction:

Ĥ (i j )
D,sec= D(i j ) · 1

2
(1− 3 cos2 θ ) · (3Î (i )

z · Î ( j )
z − Î (i ) · Î ( j )

)
= D(i j ) · 1

2
(1− 3 cos2 θ ) · [2Î (i )

z · Î ( j )
z

− ( Î (i )
+ · Î ( j )

− + Î ( j )
+ · Î (i )

−
)]
, [11]

(After this introductory section, the notation “sec” indicatin
the secular part of a Hamiltonian will be dropped for reaso
of simplicity.) In this way, the dipolar interaction can be d
vided into a static term∝ Î (i )

z · Î ( j )
z and an exchange term

∝ ( Î (i )
+ · Î ( j )

− + Î ( j )
+ · Î (i )

− ) (79). The static term can be viewe
as the interaction of a spin̂I (i ) with the dipolar field of another
spin Î ( j )

z . Depending on the orientation, i.e.,+zor−z, of the sec-
ond spin, two energy levels can be distinguished, which me
that the static term gives rise to a doublet splitting. The excha
term combines states which differ only in the polarization of t
spins. If the energy difference is negligibly small compared
the coupling, the dipolar field of one spin can “flip” the magne
moment of the second spin in a resonance process, conse
the magnetic spin-quantum numberM of the system and henc
its energy, though both spins change the sign of their states. O
the precession frequencies of both nuclei are sufficiently dif
ly,
ent, this so-called “flip-flop” mechanism is energetically sup-
pressed, and the system approaches the weak coupling limit. In
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homonuclear systems, such a situation can be accomplishe
chemical shift differences which exceed the dipolar couplin
In the case of heteronuclear dipolar couplings, the differe
between the Larmor frequencies of both nuclei is, in gene
several orders of magnitude larger than the dipolar coupling
that the heteronuclear dipolar Hamiltonian is given by

Ĥ (IS)
D,sec= D(IS) · (1− 3 cos2 θ )( Î z · Ŝz), [12]

with the exchange term being dropped and, for distinction,
two different spins being written aŝI (i ) = Î and Î ( j ) = Ŝ.

In analogy to the homonuclear dipolar case, the first-or
secular part of the quadrupolar Hamiltonian is given by

Ĥ Q,sec= e2q Q

2I (2I − 1) · h- ·
1

2
(1− 3 cos2 θ ) · (3Î z · Î z− Î · Î ).

[13]

2.2. The Spherical Representation of Interaction Tensors

For the theoretical description of NMR phenomena, it is
vantageous to divide the Hamiltonians into a space partA and
a spin partT :

Ĥ = Â · T̂ . [14]

In the secular approach, the reference frame is given by
LAB frame, whosez-axis is parallel to the quantization ax
alongB0. Consequently, all interactions have to be transform
from their principal axes frames, defined by the relative arran
ment of the interacting nuclei, into the LAB frame, as has b
done for the dipolar and first-order quadrupolar interaction
the previous section. Although these transformations can
principle, be carried out using a Cartesian notation, such
tation transformations are, in general, more easily carried o
a spherical representation. This is of further importance, s
fundamental experimental techniques, such as sample rot
(see below, Section 2.3) or application of radiofrequency pul
are rotations in real or spin space, respectively. In this sphe
representation, the spatial and spin parts,A andT , split into
three irreducible parts of the form

A = A0+A1+A2, [15]

whereA0 is a scalar, andA1 andA2 are antisymmetric and
symmetric (this applies toT identically). TheAL terms consist
of 2L + 1 componentsAL ,M , which exhibit the same transfo
mation properties as the spherical harmonicsYL ,M (90). The
Hamiltonian of any interaction can thus be written as (51, 104)

∑ L∑
M
Ĥ =

L M=−L

(−1) ÂL ,M · T̂ L ,−M . [16]
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These spherical operators are useful in that, under a rota
specified by the three Euler angles (χ, θ, φ), these components
AL ,M transform into linear combinations of themselves (belo
written asÃL ,M ), with the rankL being conserved and the orde
M ranging from−L to L (90):

ÃL ,M =
L∑

m=−L

AL ,mD(L)
m,M (χ, θ, φ)

=
L∑

m=−L

AL ,m exp(−imχ )d(L)
m,M (θ ) exp (−i Mφ). [17]

D(L)
m,M (χ, θ, φ) denotes the component (m,M) of a Wigner ro-

tation matrix, and the reduced formd(L)
m,M (θ ) is a combination of

basic trigonometric functions (73, 95).
Following Eq. [16] and considering Eqs. [10] and [12], bot

the dipolar and the quadrupolar Hamiltonian can be easily w
ten as a simple product of just one component of each ten
operator, i.e.,Â2,0 and T̂2,0, because of two limiting condi-
tions: First, the absence of isotropic and antisymmetric pa
restricts the rank toL = 2 and, second, the truncation by th
first-order secular approach reduces the order toM = 0 due to
[ Î z, Â2,m] = mÂ2,m. Taking additional normalization factors
from the tensor algebra into account, the LAB-frame Hamilt
nians are obtained in the form

Ĥ (i j )
D =

√
2

3
· Â(i j )

2,0 · T̂ (i j )
2,0 [18]

and

Ĥ Q = 1√
6
· Â2,0 · T̂2,0. [19]

The spatial parts can be viewed as the product of a dipo
and quadrupolar “frequency,”ω(i j )

D andωQ, respectively, with a
factor representing the orientational dependence of the symm
ric interaction tensor with respect to the magnetic fieldB0 (i.e.,
in the LAB frame),

A(i j )
2,0 = ω(i j )

D ·
1

2
(1− 3 cos2 θ ), [20]

where

ω
(i j )
D = 3D(i j ) = −3

µ0h-γi γ j

4πr 3
i j

, [21]

and
A2,0 = ωQ ·
2

(1− 3 cos2 θ ), [22]
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where

ωQ = 3 · e2q Q

4I (2I − 1) · h- =
3πCQ

2I (2I − 1) · h- . [23]

In Eq. [23], the quadrupolar coupling constant,CQ = e2q Q/2π ,
has been introduced, which reflects, in analogy to the dip
case (see Eq. [3]), the strength of the interaction. The spin
of the Hamiltonians is represented by the tensor operator

T̂
(i j )
2,0 =

1√
6

(
3Î (i )

z · Î ( j )
z − Î (i ) · Î ( j )

)
[24]

in the dipolar case and by

T̂2,0 = 1√
6

(3Î z · Î z− Î · Î ) [25]

in the quadrupolar case. Summation of the dipolar pair ten
T̂ (i j )

2,0 over indistinguishable pairs of spins (i j ) results in a virtual
quadrupolar system with an effective operatorT̂2,0, scaled by a
factor of 2 (see Eqs. [103] to [105] in Section 3.3.2):

T̂2,0 = 2 ·
∑
i< j

T̂
(i j )
2,0 . [26]

In this way, a quadrupolar spin-3
2 nucleus becomes for

mally equivalent to the dipolar-coupled system of three met
protons, because, in the latter case, the three dipolar
couplings are indistinguishable due to the rapid rotation
the methyl group around its threefold symmetry axis.
Section 3.3.2 we will discuss how this analogy has been u
for understanding the origin of MAS sidebands in dipolar M
MAS experiments (37).

With respect to the Hamiltonians, the spherical representa
of the interaction tensors is particularly useful for describing
effect of sample rotation, as will be shown in the followin
section.

2.3. Sample Rotation at the Magic Angle

In solid-state NMR, the spatial orientation of the interacti
tensors relative to the external magnetic field is of central imp
tance. In experiments on static samples, a wealth of informa
about structure and, even more importantly, dynamics of s
tems can be obtained from a whole range of multidimensio
NMR experiments (95). Basically, all of these correlate differen
resonance frequencies corresponding to different tensor o
tations on various time scales, and thus allow the determina
of, e.g., molecular jump angles and rates. In rigid polycr
talline 1H systems, however, the homonuclear dipolar inter
tion is stronger than the chemical shift by about one orde

magnitude, such that, in static experiments, any chemical s
information is usually obscured due to the isotropic distributi
Q COHERENCES 157
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over all dipolar tensor orientations. Since spectral resolutio
essential for almost all1H NMR applications, one of the mai
experimental goals is the reduction of the homonuclear dip
couplings.

It is the anisotropy of the dipolar interaction which caus
the unwanted line broadening. The spatial part of the Ha
tonian is represented by a second-rank tensor componentA2,0,
with an orientational dependence∝(1− 3 cos2 θ ), whereθ , as
noted above, denotes the angle of the interaction vector
respect to the external magnetic fieldB0. This transformation
property, which results from the coordinate transformation fr
the PAS to the LAB frame, hints at the possibility of removi
the interaction by introducing a further reference frame (RO
whosez-axis is tilted by the so-called magic angleθm = 54.7◦

with respect toB0. While, by this definition, the componen
along z(ROT) become equal to zero, the perpendicular com
nents in the (xy)(ROT)-plane can, in principle, also be averag
to zero by a sufficiently fast rotation of the frame (therefo
called rotor-fixed frame, ROT) about itsz-axis, such that the in
teraction would vanish completely. This approach is experim
tally realized by spinning the sample mechanically about an
which is oriented at the angleθm relative toB0. The technique
is well known as magic-angle spinning, and is widely appl
in solid-state NMR, in particular for line-narrowing purpose
Its effect on a spatial part of the formA2,0 can be evaluated
following Eq. [16], by a successive coordinate transformat
from the PAS into the ROT frame and, finally, into the LA
frame:

A(LAB)
2,0 (t) =

2∑
m=−2

A(PAS)
2,0 D(2)

0,m(α, β, γ )︸ ︷︷ ︸
(PAS)→(ROT)

D(2)
m,0(ωRt, θm, 0)︸ ︷︷ ︸

(ROT)→(LAB)

=
2∑

m=−2

A(PAS)
2,0 d(2)

0,m(β)e−imγ︸ ︷︷ ︸
A(ROT)

2,m

e−imωRtd(2)
m,0(θm) [27]

The Euler angles (α, β, γ ) denote the relative orientation of th
PAS frame to the ROT frame. The angleωRt is the rotor phase
corresponding to a rotation of the sample about thez(ROT)-axis
with the angular frequencyωR = 2πνR = 2π/τR. The Hamil-
tonians of rotor-modulated interactions are often written i
Fourier series of the form

Ĥ (t) =
2∑

m=−2

A(PAS)
2,0 d(2)

0,m(β)e−imγd(2)
m,0(θm) · T̂2,0︸ ︷︷ ︸

Ĥm

· e−imωRt ,

[28]

where the Hamiltonian is a product of time-independent Fou
componentsĤm and rotor modulation termse−imωRt . Carrying

hift
on
out the summation in Eq. [28] and using the explicit forms of
the reduced rotation matrices, the rotor-modulated and, hence,
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time-dependent spatial partA2,0(t) of the HamiltonianĤ (t) be-
comes, in the LAB frame,

A(LAB)
2,0 (t) = A(PAS)

2,0 ·
[

1

2
sin2 β cos(2ωRt + 2γ )

− 1√
2

sin 2β cos(ωRt + γ )

]
. [29]

In the case of dipolar and first-order quadrupolar inter
tions, it should be noted that, in the PAS frame, the t
sor componentA(PAS)

2,0 is identical to the dipolar and quad
rupolar frequency,ω(i j )

D andωQ, respectively (see Eqs. [21] an
[23]). Consequently, the introduction of the ROT frame can
mally be expressed by changing the orientational depend
from 1

2(1− 3 cos2 β), as given by Eq. [20] for the static cas
to [ 1

2 sin2 β cos(2ωRt + 2γ ) − 1√
2

sin 2β cos(ωRt + γ )] under
MAS conditions. In the simplest case, when̂H (t) commutes
with itself for different time argumentst , i.e., [Ĥ (t), Ĥ (t ′)] = 0
with t 6= t ′, the net Hamiltonian acting on the spin system d
ing a period [t0, t1] simply corresponds to the integration of t
time-dependent spatial part:

Ä(t0, t1) =
∫ t1

t0

A(LAB)
2,0 (t) dt= A(PAS)

2,0

2ωR

·
[
1

2
sin2 β(sin(2ωRt1−2γ )− sin(2ωRt0−2γ ))

−
√

2 sin 2β(sin(ωRt1−γ )− sin(ωRt0−γ ))

]
. [30]

With respect to NMR spectra, this expression for the ro
modulated spatial part is of fundamental importance for the e
uation of MAS-induced sideband patterns originating from di
lar or first-order quadrupolar couplings. In a first approximati
the analysis of such sideband patterns is based on a dipolarspin-
pair Hamiltonian or, by analogy, on a first-order quadrupo
Hamiltonian, both of which fulfill the above commutation r
lation [Ĥ (t), Ĥ (t ′)] = 0. The fulfillment of this commutation
relation is central to Maricq and Waugh’s definition of an “
homogeneous” interaction (72), which was introduced above
For a general consideration of MAS beyond a dipolar-coup
spin pair, an average Hamiltonian approach, corresponding
Magnus expansion (see, e.g., (73, p. 12), can be used to calc
late the effective Hamiltonian̂̄H acting on the multispin system
during a rotor periodτR,

ˆ̄H = ˆ̄H (0)+ ˆ̄H (1)+ ˆ̄H (2)+ · · · , [31]
with the termsˆ̄H (p) of orderp representing nested integrals ove
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commutators of the time-dependent HamiltonianĤ (t)

ˆ̄H (0) = 1

τR

∫ τR

0
dt′ Ĥ (t ′),

ˆ̄H (1) = − i

2τR

∫ τR

0
dt′
∫ t ′

0
dt′′ [ Ĥ (t ′), Ĥ (t ′′)],

ˆ̄H (2) = − 1

6τR

∫ τR

0
dt′
∫ t ′

0
dt′′

∫ t ′′

0
dt′′′[[ Ĥ (t ′), Ĥ (t ′′)], Ĥ (t ′′′)]

+ [[ Ĥ (t ′′′), Ĥ (t ′′)], Ĥ (t ′)]. [32]

For an inhomogeneous system, the expansion obviously
duces to its zeroth-order term, as was the case in Eq. [30
the terminology of Maricq and Waugh, the presence of a
higher-order term originating from nonvanishing commutat
[ Ĥ (t), Ĥ (t ′)] 6= 0 makes the system homogeneous. To und
stand the averaging effect of MAS, it is important to note that
zeroth- and even the first-order terms vanish for an integra
over a full rotor period, as can be seen from Eqs. [29] and [30]
the zeroth-order terms. Thus, when subject to an inhomogen
interaction, the state of the spin system is fully refocused a
each rotor period and the observed time signal does not de
resulting in infinitely narrow spinning sidebands in the spec

In Eq. [31], the higher-order terms of the average Hamilton
are defined in a recursive fashion by nesting the integrals
the commutators. A closer inspection reveals that a time fa
of the orderτR is associated with each integral, whereas the n
malization factor remains proportional toτ−1

R . Consequently, a
term ˆ̄H (p) of order p contains an effective time factor of th
orderτ (p−1)

R , such that the higher-order terms, which are resp
sible for the homogeneous character, converge in the follow
recursive form (35)

ˆ̄H (p+1) ∝ |Ĥ |
ωR
· ˆ̄H (p), [33]

with the ratio of the norm|Ĥ | and the MAS frequencyωR deter-
mining the weight of higher-order contributions. In other word
a term of order (p+ n) is discriminated with respect to a term
of order p by a factor (|Ĥ |/ωR)n.

Purely first-order quadrupolar systems are always inhomo
neous, while in dipolar multispin systems couplings between
ferent pairs have to be considered. If the pairs are either iden
or completely different, the commutators [Ĥ (i j )

D (t ′), Ĥ (i j )
D (t ′′)]

or [Ĥ (i j )
D (t ′), Ĥ (kl)

D (t ′′)], respectively, vanish. The interference
two dipolar pair couplings involving one common spin, i.e., tw
pairs (i j ) and (ik), leads to commutators of the form[

Ĥ (i j )
D (t ′), Ĥ (ik)

D (t ′′)
] = Â(i j )

2,0 (t ′)Â(ik)
2,0 (t ′′) · [T̂ (i j )

2,0 , T̂
(ik)
2,0

]
, [34]
r
which, in general, do not vanish, except for the special case
of both spatial partsÂ(i j )

2,0 (t) and Â(ik)
2,0 (t) having an identical



n

r
,
o

t
in

o
t
l

g
c
b
o
it
e

t
s

a
a

e

re
m
s

r

c

o

)

ic

n

ice,
tic
ical

-

o

o-
gnal

ms
in
gs
d-
of

ince

n

FAST MAS AND M

orientation and time dependence, which meansÂ(i j )
2,0 (t ′)/

Â(ik)
2,0 (t ′) = constfor all t ′. It is thus the commutator given i

Eq. [34] which causes a dipolar-coupled multispin system
behave homogeneously under MAS, unless the dipolar inte
tion tensorsD(i j ) andD(ik) differ only in their absolute values
but not in their orientation dependence. In other words, to c
serve an inhomogeneous character,D(i j ) and D(ik) need to be
transformable into each other by a simple scaling or transla
procedure, as, e.g., for a linear arrangement of the three spi ,
j , andk.

To conclude the consideration of the effect of MAS
the spatial parts of NMR interactions, we now turn briefly
the observed spectra. Static spectra exhibit characteristic
shapes which result from the integration over the distribution
orientation-dependent resonance frequencies. When rotatin
sample at the magic angle, the spatial parts of all anisotropi
teractions are modulated and, consequently, spinning-side
patterns are generated in the spectra. In the case of inh
geneous systems, the resonance lines are, in theory, infin
mally narrow, since the state of the spin system fully recov
after each rotor period and, hence, the time signal is con
uously periodic. The inhomogeneous character of a sys
disappears as soon as a homogeneous interaction come
play, since then the higher-order terms̄̂H (n) with n > 1 in
Eq. [31] do contribute, making the spin system evolve in the fo
ρ̂(0)→ ρ̂(τR) 6= ρ̂(0). The spin system does then not come b
to its initial state and, due to destructive interference, the rem
ing contribution of ˆρ(0) to the states ˆρ (t = NτR) at the so-called
rotor echoest = NτR decreases with increasingN. If ρ̂(0) is a
completely detectable state with signal intensityS(0), the signal
S(t) will then, in general, decay with timet . This behavior is
well known as the free induction decay (FID) and a fundam
tal phenomenon in Fourier transform NMR. From this point
view, it is intuitive that homogeneous interactions broaden
onance lines, with the linewidth being determined by the ti
constant of the signal decay. In reverse, this argument mean
reducing the contributions of higher-order termsˆ̄H (n) in Eq. [31]
by MAS narrows the resonance lines observed in the spect

2.4. Moment Analysis of Static Dipolar Lineshapes

The presence of dipolar couplingŝH (i j )
D , in addition to the

Zeeman interaction̂H Z , spreads the energy levels and, hen
the nuclear resonance frequencies symmetrically around
Larmor frequency, because every spin is subject to the dip
fields of its neighboring spins. These fields, which depend
their relative “orientation” (∝ ± Î z, cf. discussion in Section 2.1
with respect to the quantization axis, either raise or lower the
ergy level of the spin state. Applying perturbation theory, wh
can be restricted to first order since|Ĥ D| ¿ |Ĥ Z|, the correc-
tion E(1)

D for the unperturbed energy levelE(0)
Z of the Zeeman

state is simply given by|Ĥ D|. In general, the exact calculatio

of the eigenstates of̂H = Ĥ Z + Ĥ D is not possible, because
for homonuclear dipolar couplingŝH D the terms∝ Î (i )

z Î ( j )
z and
Q COHERENCES 159
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∝ Î (i ) Î ( j ) do not commute and cannot be separated. In pract
the distribution of energy levels, corresponding to the sta
spectral lineshape, is therefore described by a phenomenolog
moment analysis following Van Vleck’s approach (111, 1).

For a resonance line with a spectral distributionf (ω) around
a central frequencyω0, thenth moment is given by

Mn =
∫

(ω − ω0)n f (ω) dω. [35]

The spectral distribution functionf (ω) and the time signalS(t)
are interconvertable by Fourier transformation, which, for sym
metric distributions, can be restricted to its cosine part:

S(t) ∝
∫

f (ω)eiωt dω
symm.=

∫
f (ω) cos(ωt) dω. [36]

It is obvious that the even-numbered 2nth momentsM2n are
related to the 2nth derivatives of the time signal with respect t
time by

M2n = (−1)n

S(0)

(
∂2nS(t)

∂t2n

)
t=0

, [37]

while the odd-numbered moments vanish. Technically, the m
ment analysis corresponds to a series expansion of the si
S(t), and can thus be written in the form

S(t) ∝ 1− t2

2!
M2+ t4

4!
M4∓ · · · . [38]

Denoting the dipolar coupling strength byD(i j ) and its
orientation-dependent formD(i j ) · 1

2(3 cos2 θi j − 1) byDi j , the
second and fourth moments are given by (for derivation see (1))

M2 = 9

4

N∑
i< j

D2
i j

powder= − 9

20

N∑
i< j

(
D(i j )

)2
[39]

and

M4 =
(

3

2

)4[
3

( N∑
i< j

D2
i j

)2

− 2
N∑

i< j

D4
i j

− 1

3N

N∑
i 6= j 6=k

(
D2

i j (Dik −D jk)2
)]
. [40]

The second moment consists of a sum over spin-pair ter
(i j ) only, while in the fourth moment the presence of a third sp
k gives rise to terms consisting of products of spin-pair couplin
(i j ), (ik), and (jk), which thus correlate three spins. Procee
ing to higher moments, it is clear that the maximum number
correlated spins increases with the order of the moments. S
the contribution of higher moments to the observed signalS(t)
increases with time (cf. Eq. [38]), the evolution of a multispi

system under dipolar interactions has the effect of incorporating
more and more spins into a common state: the dipolar-coupled
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spin cluster grows (78, 75). In a more descriptive view, the mo
ments given in Eq. [35] reflect the lineshape in the resona
spectrum. For example, a Gaussian lineshape

f (ω) = 1

1
√

2π
exp

(
− (ω − ω0)2

212

)
[41]

requires the moments to fulfill the relationM2n= (2n− 1)12n

and, consequently,M4/(M2)2 = 3. A characteristic parame
ter, which is obvious from the experimental spectrum, is
full width at half-maximum height1′ of the resonance line. A
Gaussian line is characterized by1′ = 2

√
221. Comparing

Eq. [39] with Eq. [40], it is clear that, in a multispin system
dipolar interactions do not result in a purely Gaussian linesha
andM4 can be written asM4 = 3(M2)2+ ξ , with ξ denoting the
deviation from a purely Gaussian behavior.

The practical significance of the moment analysis approac
that it provides an approximate but analytically manageable
malism which allows the description of spectral lineshapes w
out requiring a knowledge of the eigenfunctions or eigenval
of the Hamiltonian of the entire system. The approach is limi
to the interaction and the initial state of the spin system at
start of the evolution, with the interaction containing the stru
tural information about the system. In this way, the second m
ment can be identified with an effective dipolar coupling stren
Deff=

√∑N
i< j (D

(i j ))2, or an effective internuclear distance.

The static1H NMR spectrum of adamantane, shown in Fig.
exhibits a static linewidth of1′ = 2π · 12 kHz. Approximating
the lineshape by a purely Gaussian line, this results in an effec
dipolar coupling strength ofDeff ≈ 1′/1.58≈ 2π · 7.6 kHz.

2.5. Factorization of the Time Signal under MAS

The theoretical consideration of NMR spectra is genera
based on the Liouville–von Neumann equation

∂ρ̂

∂t
= −i [ Ĥ , ρ̂(t)] = −i Ĥρ̂(t), [42]

which is obtained through the extension of the time-depend
Schrödinger equation from a single wavefunction9 to a sta-

FIG. 1. Adamantane molecule C10H16 and static1H NMR spectrum of

adamantane with experimental linewidth1′ = 2π · 12 kHz.
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tistical quantum-mechanical ensemble, whose properties are
flected by a density matrix ˆρ. The Hamiltonians represent all
interactions acting on the system ˆρ. Formally, this action can
equivalently be written as a commutator [Ĥ , ρ̂(t)] or a superop-
eratorĤρ̂(t). The formal solution to the differential Liouville–
von Neuman equation is given by

ρ̂(t) = L̂(t)ρ̂(0)L̂
+

(t) [43]

with the propagator

L̂(t) = T̂ exp

(
−i
∫ t

0
Ĥ (t ′) dt′

)
, [44]

which “propagates” the density matrix of the system fromt ′ = 0
to t ′ = t by subjecting it to the interactions. The time-orderin
operatorT̂ formally ensures the correct order of the Hamilton
ansĤ (t ′) with respect to the time intervaldt′ of the integration.
This time-ordering operation is required because, in gene
Hamiltonians at different points of time do not commute; i.e
[ Ĥ (t ′), Ĥ (t ′′)] 6= 0 for t ′ 6= t ′′.

An alternative approach separates the rotor modulation fro
the Hamiltonian (see Eq. [28])

Ĥ (t) =
2∑

m=−2

Ĥm · exp(imωRt) [45]

by applying the so-called Floquet formalism. Changing the re
erence system from Hilbert space to the infinite dimension
Floquet–Hilbert space means taking the MAS-induced time d
pendence out of the Hamiltonian and putting it into the wav
function. This transformation corresponds to changing from t
Heisenberg to the Schr¨odinger representation of quantum me
chanics (93). In this way, there is no longer the need to app
time-ordering operators to the propagators, and the problem
be solved under MAS conditions in an analogous fashion
the static case. Furthermore, each wavefunction is directly
lated to a MAS sideband of corresponding order, and sideba
of different order can thus be described independently (94, 81,
70, 82). These simplifications are accomplished at the expen
of having to deal with an infinite number of dimensions in th
Floquet–Hilbert space; the reduction to a manageable num
of dimensions then requires an approximate approach.

As described in great detail by Filipet al. (35), the trans-
formation of Hamiltonians and density operators into Floqu
space can be carried out in such a way that, on returning b
into Hilbert space and incorporating the advances of Floqu
formalism, the Liouville–von Neumann equation is obtained
the form

∂

∂t
ρ̂n,q(t) =

(
iωR

∂

∂φ
+
∑

m

exp(imφ)Ĥm

)
ρ̂n,q(t), [46]
Ĥ′
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where the operatorŝHm, ∂
∂φ

, andĤ′ are written as superoper
atorsĤρ̂ = [ Ĥ ρ̂ − ρ̂Ĥ ] in Liouville space. The density op
eratorρ̂n,q is a matrix element of the Floquet density operat
which includes the initial state ˆρ(0), a MAS-related phase facto
exp(iqφ), and Fourier states|n〉 =∑N

i=1 | exp(inωRt)|9i 〉:

ρ̂n,q = |n〉〈n|ρ̂(0)|n+ q〉〈n+ q| exp(iqφ). [47]

The HamiltonianĤ′ in Eq. [46] consists of two parts,

Ĥ(0) = iωR
∂

∂φ
,

[48]
Ĥ(1) =

∑
m

exp(imφ)Ĥm,

which, in terms of a perturbation approach, can be regarde
a dominant interactionĤ(0) perturbed byĤ(1), provided that
the MAS frequency exceeds the rotor-modulated interactio
a sufficient extent, i.e.,ωR > |

∑
m Ĥm|. Note that scaling the

dominant interaction byωR corresponds to scaling the pertu
bation byω−1

R . Such a convergence with an inverse depende
onωR with respect to the unperturbed, i.e., dipolar-decoupl
case was encountered above in the discussion of the serie
pansion of an interaction under MAS (see Eq. [33]). Compar
the dipolar interaction in the rotor-modulated case with tha
the static case, it is important to note that, under MAS, the
roth Fourier component̂H0 vanishes due to the magic-ang
conditionĤ0 ∝ d(2)

0,0(θm) = 1
2(3 cos2 θm − 1)

!= 0.

Proceeding with perturbation theory, the HamiltonianĤ′ in
Eq. [46] can be reexpressed in terms of the Fourier compon
of the rotor-modulated Hamiltonian (see Eq. [45]) (35):

Ĥeff = Ĥ0+
2∑

m=−2
m6=0

[ Ĥ−m, Ĥm]

2mωR

+
2∑

m,p=−2
m,p6=0

[[ Ĥ−m, Ĥm], Ĥ p]

3mpω2
R

+ · · · . [49]

As a consequence of the Fourier approach, the initial s
ρ̂(0) is formally distributed over the centerband ˆρ0(0) andnth-
order sidebands ˆρn(0), although att = 0 obviously no rotor
modulation has occurred yet,

ρ̂0(0) =
[

1+
∑

m

Ĥm

mωR
+
∑

m1,m2

[ Ĥm2, Ĥm1]

2(m1+m2)m2ω
2
R∑ [ Ĥ−m, Ĥm] ∑ [ Ĥ0, Ĥm]

]

−

m 2m2ω2
R

−
m 2m2ω2

R

ρ̂(0) [50]
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ρ̂n(0)=
[
− Ĥn

nωR
+
∑

m

ĤmĤn−m

2n(n−m)ω2
R

− [ Ĥn, Ĥ0]

2n2ω2
R

]
ρ̂(0),

[51]

where the summations are to be carried out over the rang
Fourier components, i.e.,m,m1,m2 = 0,±1,±2, excluding
those values for which the denominator would be equal to z
Note that the initial density operators of the MAS sideban
vanish, if there is no perturbation (i.e., ˆρn(0) = 0 for n > 0, if
Ĥm = 0 for all m 6= 0).

Considering these initial density operators, the following co
clusions can directly be drawn: First, MAS sidebands origin
from the rotor-modulated componentŝHm with m 6= 0 of the
Hamiltonian (see Eq. [28]); second, these components are sc
byω−k

R , where the exponentk corresponds to the degree of com
mutator nesting; and third, this approximation, using a first-or
perturbation approach, includes only sidebands up to the se
order, because the dipolar Hamiltonian, being a second-r
tensor operator, splits into Fourier components of up to sec
order only:Ĥm with −2≤ m≤ 2.

In general, the NMR time signalS(t) can be expressed a
S(t) ∝ Tr[ Î x · ρ̂(t)], where Î x represents the observation ope
ator. Thus, starting from the initial states ˆρn(0) of all sideband
ordersn, the NMR time signal of a spin system, which is subje
to an effective Hamiltonian̂Heff, can be calculated using (36)

S(t)∝
∞∑

n=0

Tr
[

Î x ·
(

1+ (−i t )

1!
Ĥeff+ (−i t )2

2!
Ĥ2

eff+ · · ·
)
ρ̂n(0)

]
,

[52]

where the exponential propagator has been approximated
series expansion of the superoperatorĤeff. This expansion can
be written in a completely factorized form

S(t) =
∞∑

n=0

InWn(t) exp(inωRt), [53]

where the intensityIn, the decay functionWn(t), and the ro-
tor modulation exp(inωRt) are given by factors, each of whic
refers to a specific sideband ordern. In analogy to the momen
approach applied in the static case, the decay functionWn(t),
which determines the spectral lineshape, can be expanded
a series of momentsMk,n,

Wn(t) =
∞∑

k=0

(−i t )k

k!
Mk,n, [54]
with thekth moment of thenth-order spinning sideband being
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given by

Mk,n =
Tr
[
Î x · Ĥk

effρ̂n(0)
]

Tr[ Î x · ρ̂n(0)]
= 1

In
Tr
[
Î x · Ĥk

effρ̂n(0)
]
. [55]

Since it can be shown that
∑

m
1
mĤ

(i j )
m Ĥ(i j )

−m = 0, all odd-
order moments vanish, so that the second momentsM2,n are
the leading terms in the series expansion of the decay f
tions (Eq. [54]). For the centerband (n = 0) and thenth-order
sidebands, the intensitiesIn and the second momentsM2,n can
themselves be expanded into series of the form

I0 = Tr

[
Î x ·

(
1+

∑
m

Ĥm

mωR
+
∑

m1,m2

Ĥm2Ĥm1

(m2+m1)m2ω
2
R

−
∑

m

ĤmĤ−m

m2ω2
R

+ · · ·
)

Î x

]
,

In = Tr

[
Î x ·

(
− Ĥn

nωR
+
∑

m

ĤmĤn−m

n(n−m)ω2
R

−
∑

m

ĤnĤm

nmω2
R

− ĤnĤ0

n2ω2
R

+ · · ·
)

Î x

]
, [56]

and

M2,0 = 1

I0

∑
m,p

Tr[ Î x · ĤmĤ−mĤpĤ−p Î x]

mpω2
R

+ · · · ,

M2,n = 1

In

∑
m,p

Tr[ Î x · ĤmĤ−mĤpĤ−pĤn Î x]

mpnω3
R

+ · · · . [57]

ComparingM2,0 andM2,n, it is clear that the linewidths of th
sidebands (n ≥ 1) are determined by spin correlations, wh
are of higher order than those determining the width of the
terband, because the leading terms ofM2,0 andM2,n consist of
products of four and five superoperatorsĤm, respectively. Be
ing written in such an elaborate way, the equations are ra
complex and do not straightforwardly allow an efficient c
culation of MAS spectra. The analytical expressions, howe
provide valuable insight into the principal features of such s
tra. With increasing time, the dipolar interaction correlates m
and more spins, generating a growing dipolar-coupled clu
which is well known from the static case. The decoupling
fect of MAS counteracts this growth process through scaling
spin-correlation terms by increasing inverse powersω−k

R of the
MAS frequency, with the exponentk corresponding to the orde
of the spin correlation, i.e., the number of coupled spins. T
behavior is obvious from the intensitiesIn of the centerband an

the sidebands, when the terms in Eq. [55] are written in the f
lowing merged form, where the terms are ordered with resp

and
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to the inverse power of the MAS frequency, by which they a
scaled (36):

In = I (0)

(
δn,0+ 1

ω2
R

N∑
i, j

I (i j )
n + 1

ω4
R

N∑
i, j,k

I (i jk )
n + · · ·

)
. [58]

The summations include allN spins of the system,I (0) de-
notes the overall integral signal intensity, and the termsI (i j )

n

and I (i jk )
n combine the contributions of two- and three-spin co

relations (i j ) and (i jk ), respectively, to the intensity of thenth
sideband. In the limitωR→∞, all terms vanish exceptδ0,0 = 1
which represents the remaining sharp central resonance line.
decay functionsWn(t) from Eq. [54], which are responsible fo
the linewidths, can be written in an analogous form, as is sho
here for the leading terms, i.e., the second moments, in the se
expansion of Eq. [54]:

M2,n = 1

In

(
1

ω2
R

N∑
i, j,k

M (i jk )
2,n +

1

ω4
R

N∑
i, j,k,l

M (i jkl )
2,n + · · ·

)
. [59]

Comparing this series to that of the intensities in Eq. [58]
is clear that two-spin correlations, in spite of being the leadi
terms for the intensities, do not contribute to the moments a
hence, not to the linewidth either. Instead, the latter is prim
ily determined by three-spin correlations and, with decreas
weight, by higher spin correlations. The intensities, on the co
trary, are dominated by two-spin correlations, reflecting the
homogeneous character of a dipolar spin-pair system. In m
general terms, Eqs. [58] and [59] show that with increasing MA
frequency,ωR, the multispin dipolar network is simplified, be
cause low-spin correlations dominate both the intensity dis
bution and the linewidths of the sidebands.

2.6. Narrowing of Dipolar-Broadened Lines by MAS

In the above section, it has been shown that combining
Floquet formalism with perturbation theory allows the facto
ization of the NMR time signalS(t) under MAS in terms of
a Fourier series (see Eq. [53]). Concerning spectral reso
tion and, hence, the access to chemical shift information,
linewidth, determined by the decay functionWn(t), is the crit-
ical parameter. From the above equations, the degree of
narrowing achievable by MAS can be estimated by comparis
to the case of a static dipolar-coupled system. For the lat
assuming a Gaussian lineshape, the linewidth is proportio
to the square root of the second moment. Therefore, if it
assumed that a given resonance line, in particular the cen
band, under MAS can also be approximated by a Gauss
shape, the ratio of the second moments of the static line

ectthe MAS centerband directly reflects the relative line-narrowing
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effect:

(M2)MAS

(M2)stat
=

1
ω2

R

∑
m,p

1
mp Tr[ Î x · ĤmĤ−mĤpĤ−p Î x] + · · ·

Tr
[
Î x · Ĥ2

D Î x
] .

[60]

Apart from the obviousω−2
R -scaling ensuring a reductio

of (M2)MAS for high MAS frequencies, it is interesting to in
spect the products of the dipolar superoperators. The l
ing term of the series expansion in the numerator is a
over products of the form1

mpĤmĤ−mĤpĤ−p, which con-
sist of Fourier components of the dipolar Hamiltonian w
m, p 6= 0, with the superoperatorŝHm,p denoting the respec
tive sums

∑
i< j Ĥ

(i j )
m,p over all dipolar-coupled pairs (i j ). The

possible combinations of indicesm and p in the product are
restricted by two conditions: First, one spin has to be ident
in all four pair superoperators of the product, because other
the commutators—which are inherent to the above supero
ator notation—would vanish. Second, the product is also e
to zero, if all four operators concern the same spin pair (i j ),
because

∑
m

1
mĤ

(i j )
m Ĥ

(i j )
−m = 0. As a consequence of these tw

conditions, the product1mpĤmĤ−mĤpĤ−p gives rise to three
spin correlations only and can hence be written as∑

m,p

1

mp
ĤmĤ−mĤpĤ−p

=
∑
i< j,k
k 6= j

∑
m,p

1

mp
Ĥ(i j )

m Ĥ
(i j )
−mĤ(ik)

p Ĥ
(ik)
−p . [61]

In contrast, the static term in the numerator, which conta
Ĥ2

D =
∑

i< j,k Ĥ
(i j )
D Ĥ

(ik)
D , leads to the generation of three-sp

(for j 6= k) as well as two-spin correlations (forj = k). There-
fore, the denominator exceeds the numerator by these two
correlations. Moreover, a more detailed analysis including
orientation dependencies of the dipolar couplings reveals
the contribution of spin correlations decreases with increa
number of involved spins. Though this behavior depends on
geometry of the considered system, it turns out to be a ge
feature when taking the following aspect into account: A tw
spin correlation contributes to a large extent to the state o
spin system, if the orientation of the dipolar interaction ten
with respect to the magnetic field is favorable. In order to
low a three-spin correlation to contribute to the same exten
least two interaction tensors have to be oriented in a compa
favorable way. The latter scenario, however, is less proba
With an increasing number of spins, the statistical probab
of the system being favorably oriented decreases and, there
in Eq. [60] the denominator always exceeds the numerator
considerable amount.
The line-narrowing effect of MAS is hence twofold: Firs
two-spin correlations no longer contribute to the linewidth, b
Q COHERENCES 163
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instead give rise to the generation of sidebands; second
second moment is, under MAS, scaled byω−2

R , which means
anω−1

R -scaling of the linewidth. At first sight, the former effec
appears to be independent of the MAS frequency, but in
MAS comes into play gradually with increasingωR, because the
approximations improve, on which the analytical considerati
in the previous section are based. For the series expansion
ratio of the dipolar coupling strength versus the MAS frequen
is crucial, and the restriction to the leading terms, as in Eq. [6
represents the maximum simplification which is only justifi
for MAS frequencies exceeding the Fourier componentsĤ(i j )

m

of the dipolar interaction.
Hence, starting from the static case and increasing the s

ning frequency gradually, MAS reduces the width of hom
geneously broadened resonance lines at first as a result o
coaction of, first, theω−1

R -scaling and, second, the increasing
efficient suppression of the line-broadening effects of hig
spin correlations. This suppression means, in other words,
the system, though homogeneous under static conditions, d
ops an inhomogeneous character under MAS. Once this qu
inhomogeneous limit is reached, the linewidth shows a pureω−1

R
dependence, as is depicted in Fig. 2b.

To conclude this section, we point out that the fundam
tal mechanism underlying the line-narrowing effect of MAS
homogeneous dipolar systems is that MAS suppresses the
tributions of higher spin correlations to the observed signal,
the suppression efficiency increases with the number of s
involved in the correlation. While, in the static case, two-sp
correlations are primarily responsible for1H linewidths, they no
longer contribute to the broadening of a resonance line under
ficiently fast MAS, since they are of inhomogeneous chara
and, hence, primarily responsible for the intensity distribut
over the spinning-sideband pattern. Therefore, maximum
narrowing is already achieved when the MAS frequency suffi
to suppress three-spin correlations efficiently. It is hencenottrue
that there is no hope to narrow a homogeneously broadened
as long as the MAS frequency is less than the observed s
linewidth. Instead of the effective overall coupling, the MA
frequency needs to exceed only those dipolar pair interacti
from which three-spin correlations arise (36). This means that,
theoretically speaking, MAS may even be less than the stron
pair interactions, because no line broadening occurs as lon
only two-spin correlations are generated. In real systems,
usually rather difficult to make this distinction, and the co
plexity of the equations discussed in this context indicates
it is, for a particular sample, also very difficult to predict th
dependence between linewidth and MAS frequency in a fu
quantitative manner. However, state-of-the-art MAS equipm
allows spinning frequencies considerably above the stron
dipolar pair couplings in rigid1H systems, which are only up t
aboutD(i j ) = 2π · 20 kHz. In this way, quasi-inhomogeneou
t,
ut
conditions can be achieved in most cases to a satisfactory
extent.
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FIG. 2. (a)1H one-pulse spectra of adamantane, recorded at different M
frequencies. (b)1H linewidth of adamantane under MAS plotted against
spinning frequency. The experimental linewidth is scaled relative to its s
value of1′stat= 2π · 12 kHz.

2.7. MAS Sideband Patterns and Model Spin Systems

The previous sections revealed that, considering the1H time
domain signal under MAS, the dominating terms of the dipo
interactions, i.e., the two-spin correlations, do not broaden
resonance lines, but are instead primarily responsible for th
tensity distribution over the spinning-sideband pattern. On
one hand, this points out that resolution enhancement is pos
by applying MAS frequencies even below the static linewid
On the other hand, the experimental spinning-sideband pa
itself contains information about the underlying dipolar int
action, because the pattern maps out the anisotropy of th
teraction and allows the determination of the tensor and its
entation. Indeed, the inspection of MAS sideband patterns
become a well-established approach for characterizing

chemical shift anisotropy (CSA) (72, 56). Analogously, an anal-
ysis of the sideband pattern originating from dipolar two-sp
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correlations would be expected to yield the strength of the
derlying dipolar pair coupling.

The NMR time signalS(t) of a single dipolar-coupled sp
pair can easily be calculated by integrating the rotor-modul
spatial part of the dipolar interactionD(i j ) over the time interva
[0, t ] (see Eq. [30]). For powdered samples, the polar an
(βi j , γi j ) of the symmetric interaction tensor have to be avera
over all orientations with respect toB0:

S(t) ∝
〈

cos

(∫ t

0
A(LAB),(i j )

2,0 (t) dt

)〉

=
〈

cos

(
3D(i j )

2ωR
·
[

1

2
sin2 β(sin(2ωRt − 2γ )+ sin(2γ ))

−
√

2 sin 2β(sin(ωRt − γ )+ sin(γ ))

])〉
. [62]

In Fig. 3, the characteristic behavior of an inhomogene
dipolar spin-pair system under MAS is displayed: As soon
the sample rotation sets in, the static Pake pattern (88) splits im-
mediately into a bunch of infinitesimally sharp rotational si
bands. With increasing MAS frequencies, the signal gradu
concentrates in the centerband. In the static case, the str

FIG. 3. 1H spin-pair spectra calculated using Eq. [61] for static conditi
and under MAS of different frequenciesωR. The spinning-sideband patterns,
in
well as the static Pake pattern, allow the determination of the dipolar coupling
strength. The spectra are scaled to equal height.
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of the dipolar interaction can be directly determined from
frequency difference between the two singularities of the P
pattern, while, under MAS, the coupling strength is reflecte
the sideband pattern (46). From an experimental point of view
it is important to note that the signal-to-noise ratio dramatic
improves under MAS, because the signal is concentrated in s
sidebands instead of being distributed over a large spectral r

In order to ensure simplicity, the above equation consid
only a single spin pair, while real1H systems are usually cha
acterized by many dipolar proton–proton couplings. In such1H
multispin systems, three-spin and higher spin correlations
rise to the familiar homogeneous line-broadening effects
also to distortions of the intensity distribution over the MA
sideband pattern (see Section 2.5). In order to get an idea a
the changes occurring in the MAS spectrum when an inho
geneous1H system gradually becomes homogeneous, we
consider the perturbing effect of a third spin on a spin pair, w
the third spin embodying all additional dipolar couplings act
on the spin pair. To provide a self-consistent scale for the
turbations as well as for the decoupling effect of MAS, both
perturbing coupling and the MAS frequency are given rela
to the considered pair coupling:

ξ1 = Dpert

Dpair
and ξ2 = 2πDpair

ωR
. [63]

Consequently, with respect to the MAS frequency,ωR, the per-
turbation can be represented by a dimensionless parameteξ ,

ξ = ξ1 · ξ2 = 2πDpert

ωR
. [64]

When more than one spin perturbs the pair coupling, the
fective perturbing coupling strengthDpert can be approximate
by the sumDpert

eff =
√––––––––––∑

(Dpert
i )2 over all perturbing coupling

Dpert
i . Thus, the perturbation decreases either whenDpair in-

creases relative toDpert or when the MAS frequency, i.e., th
decoupling efficiency, increases.

In addition the effective strength of the perturbation, rep
sented byξ , also the mutual arrangement of the three spins in
ences the transition from an inhomogeneous to a homogen
system. In the discussion of Eq. [34], it has already been n
that the inhomogeneous character is preserved when the
or more spins are arranged in a linear fashion. In this spe
and somewhat artificial case, no line broadening occurs, an
effect of the perturbing spin on the intensity distribution o
the sideband pattern can be investigated selectively. Thu
resemble the homogeneous properties of real1H systems, the
three spins have to adopt a nonlinear arrangement. As a s
representative geometry, we place three spins at the vertic
an isosceles triangle, which will henceforth be referred to as
1-arrangement.
In the following, we consider1H spin pairs with an internu-
clear distance of 0.18 nm, corresponding to the protons of
Q COHERENCES 165
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FIG. 4. MAS spectra of two1H three-spin systems of different geometry. A
dominating pair interactionDpair = 2π · 20.6 kHz is perturbed by a coupling to
a third spin ofDpert= 2π · (1 . . .10) kHz. The MAS frequency isωR = 2π ·10
kHz, and henceξ ≈ 0.1 . . .1.

CH2 group, with a dipolar coupling ofDpair = 2π ·20.6 kHz. A
third spin interacts with this pair through perturbing coupling
within the range ofDpert = 0 . . . 1

2 Dpair. Both the inhomoge-
neous case of a linear arrangement and the homogeneous
of a1-geometry were numerically simulated by means of
explicit density matrix calculation. The MAS frequency is se
to ωR = 2π · 10 kHz, which is less than the dominating pa
coupling, butωR ≥ Dpert is ensured.

Figure 4 shows the simulated1H MAS spectra for both con-
sidered spin arrangements. The residual linewidth forξ → 0 is
purely artificial and corresponds to the number of calculated ti
increments for the signal and the subsequently applied weig
ing function. With increasing perturbation, the resonance lin
decrease in height and, in the homogeneous case, undergo
vere broadening which increases with the order of the sideba
In the inhomogeneous case, as is expected, no line broade
is observed, but even the pattern seems to be only margin
distorted by the perturbation; the extent of the perturbing effe
is displayed in Fig. 5a. With respect to the intensity distrib
tion over the sideband pattern, both arrangements show eff
of comparable extent, but in the1-arrangement the intensity of
the centerband is reduced most, while in the linear arrangem
the first-order sidebands are also strongly affected.

Another feature arising from the geometry is the fact that t
spins in the1-geometry are much more likely to form three-spi
correlations than in a linear arrangement. Therefore, it is int
esting to investigate the actual contribution of three-spin corre
tions to the MAS spectrum of the1-system. In order to unravel
these, the three-spin MAS spectrum based on two-spin corr
tions only is calculated for comparison. Recalling Eq. [58], it
clear that each spin contributes a normalized signal intensity
a
say, one, which remains in the centerband as long as there is no
dipolar interaction present:δ0,0 = 1 and I (···)

n = 0. Any pair



AN

o
,
th

,

in

-

nd
w

r
t
p
a
l

n
i

ly
e
g

w
th
s
r
e

e
g
in

nd is
ity

the
the
-
e

and
t

of
bic
will
an-
be

tane

lid-
ed a
f a
re,
its
gs
ons
ced,
nly
be-

e, the

ance,

led

ot
r-
166 SCHNELL

FIG. 5. (a) Centerband (n = 0) and sideband intensities in MAS spectra
the1H three-spin systems depicted Fig. 4: solid lines,1-geometry; dotted lines
linear geometry. (b) Contribution of spin correlations of different order to
intensity distribution over the sideband pattern for the1-geometry; solid lines
two- and three-spin correlations; dotted lines, only two-spin correlations.

coupling transfers signal intensity from the centerband
spinning sidebands. Considering again the1-geometry, each
of the spin pairs is coupled to two spins at distances of 0.18
and 0.30 nm, corresponding to dipolar coupling strengths
D(i j )/2π = 20.6 and 4.5 kHz, respectively, with the perturb
ing spin being symmetrically coupled to each of the spins
the pair byD(i j )/2π = 4.5 kHz. Consequently, the sideba
intensities are given by the sum of three spin-pair spectra
the respective coupling strengths 20.6, 4.5, and 4.5 kHz, while
the centerband is reduced from its initial normalized value
3 to the residual signal intensity which has not been transfe
to the sidebands. In Fig. 5b, the sideband intensities origina
from two-spin correlations only and from the entire three-s
system are compared. It is then apparent that up to a perturb
of aboutξ = 0.3 · · ·0.4 the three-spin correlations can safe
be neglected.

Another example demonstrating the decoupling efficie
of MAS is displayed in Fig. 6, namely a planar four-sp
system consisting of two spin pairs, each coupled byDpair

and interacting with each other byDpert,1 = 0.3 · Dpair and
Dpert,2 = 0.17 · Dpair, respectively. The MAS frequency is on
2
3 of the dominant pair interaction, but it provides efficient d
coupling of both pairs, since it exceeds all interpair couplin
Comparing the spectrum of two superimposed spin pairs
that of the full four-spin system, it is obvious that, though
lines are clearly dipolar broadened in the latter, the inten
distribution over the sideband pattern agrees within an e
of only 10%. This result confirms that perturbations are n
ligible, unless they become stronger thanξ ≈ 0.5, because in
the considered four-spin system the pairs perturb each oth
ξ = 0.45 andξ = 0.25, respectively. Although the perturbin
effect is small, it changes, in addition to the line-broaden

effect, the intensity distribution over the sideband pattern e
actly as expected: While in the spin-pair spectrum the intens
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ratio between the two first-order sidebands and the centerba
0.40/0.48, the additional interpair couplings transfer intens
into the sidebands, resulting in a ratio of 0.45/0.44. As a first ap-
proximation, this effect can be taken into account by adding
first-order sideband intensities of the spin-pair spectra with
coupling strengthsDpert,1 and Dpert,2, respectively. These val
ues are 0.06 and 0.02, respectively, and, after renormalizing th
overall intensity to one, the ratio between first-order sideb
and centerband is then 0.45/0.45, which is in good agreemen
with the spectrum of the whole four-spin system.

2.8. 1H MAS Spectrum of Adamantane

The most stringent test for the validity and the limitation
the spin-pair approach is provided by the inspection of cu
systems of coupled spins. Therefore, in this section, we
demonstrate that the MAS spectrum of the protons in adam
tane, which form a dense and cubic multispin system, can
understood in terms of a spin-pair approach. An adaman
molecule consists of six CH2 and four CH units, whose1H
chemical shift difference is too small to be detected in so
state NMR. In this context, adamantane can be consider
spherical molecule with its 16 protons sitting on the surface o
spherical framework of 10 carbon atoms. At room temperatu
each molecule rotates sufficiently fast and isotropically on
site in the crystal, so that all intramolecular dipolar couplin
are effectively averaged to zero. Within a molecule, the prot
are thus fully decoupled from each other, and they are all pla
on average, at the center of gravity of the molecule. The o
dipolar interactions observed are hence intermolecular ones
tween the atoms located at these centers. In this plastic phas
adamantane unit cell is face-centered cubic witha = 0.945 nm
(3), so that each molecule has 12 nearest neighbors at a dist

FIG. 6. MAS spectra of a four-spin system, consisting of two pairs coup
by Dpair, which interfere with each other by couplings ofDpert,1 = 0.3 · Dpair

and Dpert,2 = 0.17 · Dpair. The MAS frequency exceeds the interpair, but n
the intrapair couplings (ωR = 2

3 Dpair), and therefore the bottom spectrum co

x-
ity
responding to the superposition of two pure pair spectra agrees well with the
full four-spin spectrum (top) except for line-broadening effects.
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measured between the centers of the molecules, ofd ≈ 0.67 nm.
Therefore, each proton in adamantane is coupled to 16 pro
in each of the 12 nearest-neighbor molecules, which amoun
a total of 192 nearest-neighbor protons.

Considering the adamantane molecule as a rapidly
isotropically rotating sphere with a radius ofr = 0.225 nm,
two protons of next-neighbor molecules are coupled by an
eraged dipolar interaction of̄D ≈ 2π · 410 Hz. In addition to
this closest sphere of neighboring protons, there are of co
couplings to all the protons in the more remote spheres, but
to the weak coupling strengths they only negligibly affect
MAS sideband pattern.

Thus, the structure of the1H multispin system in adaman
tane does not at all imply well-defined spin-pair interactio
but nevertheless its MAS spectrum can be explained quan
tively from two-spin correlations. For the spectrum atωR = 2π ·
4 kHz (see Fig. 7), the two-spin approach is valid, i.e., only
leading term is required for the convergence of the relevan
ries expansion, because the sidebands are well resolved
Fig. 2) and the width of the centerband belongs to the ra
where the linewidth decreases proportional toω−1

R . Note that
such a behavior is observed, althoughωR is only 2

3 of the static
1H linewidth.

From the spectrum in Fig. 7 and, in particular, from t
schematic representation, it is clear that the sidebands ar

FIG. 7. 1H one-pulse spectrum of adamantane under MAS atωR = 2π ·
4 kHz. The sideband intensity distribution is schematically depicted below
order to compare the experimental spectrum with a calculated two-spin pa

(i j )
(in this case for a coupling ofD = 2π · 5.6 kHz), the linewidths have to be
equalized.
Q COHERENCES 167
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FIG. 8. Signal intensitiesIn of the centerband (n = 0, diamonds) and of
both first-order sidebands (n = 1, squares) in experimental1H MAS spectra of
adamantane, plotted versus the inverse squared spinning frequency. The
represent the calculated intensities of a spin-pair spectrum with a couplin
Dpair = 2π · 5.6 kHz. The arrow indicates the position whereDpair = ωR.

most twice as broad as the centerband. This observation m
that higher spin correlations do affect the spectrum by line bro
ening, but their influence is still too weak to distort the inte
sity distribution—the latter statement being demonstrated
the fact that the pattern can be completely described by a s
pair calculation. After equalizing the experimental linewidt
schematically (Fig. 7), the intensity distribution agrees perfec
with a spin-pair spectrum corresponding to a dipolar coupl
of Dpair = 2π · 5.6 kHz.

Furthermore, the spin-pair model with the sameDpair de-
scribes the adamantane sideband pattern over the whole ran
MAS frequencies aboveωR = 2π ·3 kHz (see Fig. 8). The cou
pling strengthDpair = 2π · 5.6 kHz represents an effective cou
pling, given by the sum over all contributing “real” interaction

in adamantane:Deff =
√∑N

i< j (D
(i j ))2. As discussed above

each adamantane protoni is coupled to 192 nearest-neighb
protonsj with an individual coupling strength of̄D ≈ 2π · 410
Hz each. The effective coupling is hence

Deff ≈
√

192· D̄ ≈ 2π · 5.7 kHz, [65]

which perfectly agrees with the representative spin-pair c
pling. Thus, under fast MAS, where “fast” means exceeding
perturbing interactions, the behavior of the1H multispin system
in adamantane can be explained on the basis of a simple two
approach. More generally, the adamantane example shows
MAS is indeed capable of simplifying the network of dipol
is dominated by low-spin correlations.
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2.9. Interference with Chemical Shift

The fundamental reason for applying MAS is to gain sp
tral resolution or—in other words—to uncover the chemi
shift information. In the previous sections, the effect of MA
on dipolar-coupled multispin systems has been discussed
with respect to line narrowing, the result that MAS can simpl
the dense network of dipolar interactions to a superpositio
spin-pair couplings is promising. However, the success of
technique critically depends on the question of if and to w
extent1H chemical shift information is experimentally acce
sible and, as is even more desirable, if the chemical shifts
be combined with information about dipolar coupling strengt
Therefore, we now have to turn to the investigation of inter
rence effects between the dipolar interaction and the chem
shift under MAS conditions. Since we are concerned with1H
systems and relatively fast MAS frequencies, our consid
tions concentrate on the isotropic chemical shift, neglecting
chemical shielding anisotropy (CSA). However, in some ca
in particular those involving hydrogen bonds, we have obser
characteristic, but still mostly marginal, features in1H MAS
spectra, which are ascribed to CSA effects.

The isotropic chemical shift or, equivalently, the presence
a frequency offset1ω = ω−ω0 from the Larmor frequencyω0

can be classified as an inhomogeneous interaction, since th
spective isotropic Hamiltonian̂HCS remains time-independen
under MAS and hence commutes throughout the whole ev
tion period. However, the fact that the isotropic spatial par
ĤCS is not modulated by MAS means that it cannot be refocu
by MAS. Therefore, in the NMR time signal, the periodiciti
of MAS and isotropic chemical shifts superimpose, and the
called rotor echoesS(nτR) are not identical to the initial stat
S(t = 0). Exceptions from this “normal” interference are e
pected for the special case of1ω = nωR, known as rotationa
resonance (84).

Due to this interference, the homonuclear dipolar inter
tion, which is inhomogeneous for a single spin pair (i j ), adopts
a homogeneous character in the presence of a chemical
ĤCS= ω(i )

CSÎ (i )
z +ω( j )

CSÎ ( j )
z with different frequenciesω(i )

CS 6= ω( j )
CS.

Then, the commutator

[ ĤCS+ Ĥ D(t), ĤCS+ Ĥ D(t ′)]

∝ [
Î (i )
+ Î ( j )
− + Î (i )

− Î ( j )
+ , ω

(i )
CSÎ (i )

z + ω( j )
CSÎ ( j )

z

]
[66]

does not vanish anymore, and the exchange term of the d
lar interaction acts on states which differ not only with resp
to their polarization but also with respect to their precess
frequencies. Since the frequency difference corresponds t
energy level difference, it has to be sufficiently small in
der to allow the “flip-flop” process to conserve the total ene
of the system at least approximately. Otherwise, for increa

energy level differences the exchange process is gradually s
pressed, and the system approaches the so-called weak-coup
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FIG. 9. Simulated MAS spectrum of a dipolar-coupled spin pairA–B,
whose spinsA and B have different chemical shifts (Dpair = 2π · 20 kHz,
1ωCS= 2π ·5 kHz,ωR = 2π ·11 kHz, resulting inξCS= 0.45). Detecting the
signal either at spinA or spinB results in spectra which consist not only of th
expected MAS sideband pattern centred atωA

CS orωB
CS, respectively, but also of

contributions to the pattern of the other spin. The sum of the spinA and the spin
B spectra results in the “A+ B” spectrum.

limit which is, in general, fulfilled for heteronuclear dipola
interactions.

Therefore, a pair of dipolar-coupled spins with different che
ical shifts represents the simplest example for the interfere
between the chemical shift and a homonuclear dipolar inte
tion. For a chemical shift difference of1ωCS = 2π · 5 kHz,
a simulated spin-pair spectrum is shown in Fig. 9. Obvious
the splitting into two resonance lines is accompanied by mar
distortions of both the individual lineshapes and the sideb
pattern, the former being split into small multiplet-like sets
lines and the latter showing a “roof effect” toward the cent
bands. This “roof effect” arises from the fact that each of t
spins A and B not only contributes to its “own” pattern cen
tered atωA

CS andωB
CS, respectively, but also affects the patte

of the other spin by exchange processes, driven by the t
( Î A
+ Î B
− + Î A

− Î B
+). This effect can be seen from the spinA and

spin B spectra in Fig. 9, which have been simulated detect
the signal only at spinA or B, respectively. At the shaded pos
tions, spectral intensity is transferred to the other spin, caus
a distortion in its sideband pattern.

The effect on the lineshape is a kind of multiplet splittin
which becomes stronger with increasing sideband order.

up-
ling

though these splittings are mostly covered by the residual dipolar
linewidth and are hence invisible, they contribute as an additional
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mechanism to the line broadening in the spectra of real multi
systems. Consequently, the spectral resolution achievab
MAS reduces for sidebands with increasing order, because
the chemical shift-induced splitting and, as discussed in Sec
2.5, the higher orders of dipolar spin correlations contributin
the decay functionWn(t) broaden the resonance lines incre
ingly with increasing sideband ordern. In spite of these clea
effects on the lineshape and the sideband pattern, the inte
distribution over the sidebands, after being integrated for e
order, is only negligibly affected by chemical shift differenc
between the spins, as long as the perturbation caused b
chemical shift does not exceed a value ofξCS ≈ 0.4 (to obtain
this parameter, the perturbing dipolar couplingDpert in Eq. [64]
has to be replaced by1ωCS). Note that this limiting value, up to
which the perturbing effect on the MAS spectrum may be
glected, is very close to the one which was found in Section
for the perturbations due to additional dipolar couplings.

In real samples, a spatial proximity of protons and, thus, str
dipolar couplings are often concomitant with similar chemi
shifts of the involved nuclei, whereas remote and more we
coupled spins are more likely to exhibit larger chemical s
differences. In this context, the question arises to what ex
the relatively small chemical shift differences among prot
help to suppress perturbing interactions. As an example, w
turn to the four-spin system in Fig. 6, with the two spinpa
A–A and B–B now differing in chemical shift by1ωAB

CS =
2π · 3.3 kHz. In Fig. 10, the simulated MAS spectra of su
an A2B2 system are compared to those of an analogousA2A2

system without any chemical shift difference. In both cases
resonance lines broaden with increasing dipolar perturbatioξ ,
and the broadening effect increases with the sideband o

FIG. 10. Simulated MAS spectra of four-spin1H systems (a) without and
(b) with a chemical shift difference of1ωAB

CS = 2π · 3.3 kHz between the pairs
which form a planar system as displayed in Fig. 6. The pair coupling isDpair =
2π ·15 kHz, and both pairs interfere with each other byDpert= 0 . . . Dpair, while

the MAS frequency isωR = 2π · 10 kHz, resulting in a dipolar perturbation o
ξ = 0 · · ·1.5.
Q COHERENCES 169
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Considering the integral intensities, the differences between
A2A2 and theA2B2 system are minimal, although it is obviou
that in theA2B2 system the peaks are less distorted; in theA2A2

system the broadening is more pronounced and a strong pe
bation even gives rise to splittings of the sidebands. However,
chemical shift differences among protons are still too weak
significantly help with decoupling and, hence, to notably affe
the intensity distribution over the sideband pattern.

2.10. Structural Information from One-Pulse MAS Spectra

From the considerations of this section, the following co
clusions may be drawn for the information content of1H one-
pulse MAS spectra with respect to the structure of solid samp
While static1H spectra allow only little information to be ob-
tained from the linewidth about the effective dipolar interactio
present in the sample, state-of-the-art MAS equipment opens
the possibility to enhance spectral resolution significantly an
in this way, to uncover the1H chemical shift information in the
solid state. It has, therefore, become relevant to discuss the
fect of sample spinning on dense and strongly dipolar-coup
1H systems in detail, using the analytical approach presented
Filip et al. (35, 36).

Although, in a multispin system, the homonuclear dipolar i
teraction is commonly classified as homogeneous, it turns o
under fast MAS conditions, that the system can be approxima
by a superposition of inhomogeneous two-spin correlations,
flecting the fundamental spin-pair character of the dipolar co
pling. This behavior can be rationalized by noting that, starti
with a single spini , the dipolar interaction always forms a corre
lation first with the most strongly coupled spinj , since the prod-
uct of the coupling strength and the time of action is responsi
for the weight of a correlation. At this stage, the system beha
inhomogeneously under MAS, which means that, for each c
relation, the broad static resonance line splits into a pattern
theoretically, infinitely narrow lines, which is characteristic fo
the strength of the underlying dipolar interaction.

However, the two-spin correlations (i j ) are subject to dipolar
interactions with neighboring spins, from which the one,k, with
the strongest coupling to the (i j ) pair will be incorporated first
into a common three-spin state. With the appearance of s
three-spin correlations, the system develops its homogene
multispin character with the familiar line-broadening effect
At this point, a loss of information is encountered, because
two-spin correlations already combine the information abo
the dipolar pair interactions between close neighbors with m
imum spectral resolution. Higher spin correlations broaden
resonance lines and impair the access to structural informat
It is, thus, desirable to suppress them by MAS.

Therefore, resolution enhancement requires the suppres
of unwanted higher spin correlations, which arise from an init
pair correlation plus an additional interaction to a third spin. T
f accomplish this, the time scale imposed on the system by the
MAS averaging process, i.e.,τR, needs to be short enough to
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prevent the formation of three-spin correlations. From this s
nario, it is clear that the static1H linewidth is an improper crite-
rion to estimate the minimum spinning speed required for
narrowing. However, the distinction between dipolar pair a
higher-order correlations implies the existence of a minim
coupling strength or, equivalently, of a maximum pair distan
accessible by the dipolar correlation approach under MAS,
pending on the spinning frequency applied, i.e., the time s
of the averaging process. In real systems, MAS usually ha
deal with a whole range of dipolar couplings where the comp
mise between efficient decoupling of strongly coupled moie
(requiring fast spinning) and the observation of weak coupli
(requiring rather moderate spinning) might be hard to find.

Another critical point is the combination of dipolar couplin
with chemical shifts. The detection of the latter is the fund
mental reason for applying MAS, though. In1H systems, the
strongest dipolar interaction exceeds the maximum chem
shift difference, even at the highest magnetic fields curre
available, to such an extent that the intensity distribution o
the MAS sideband pattern is basically of dipolar origin, b
when considering spectrally resolved spins, the assignme
sideband intensities to dipolar pair correlations might turn ou
be ambiguous due to the exchange term in the dipolar Ham
nian. No problem arises as long as the dominant two-spin co
lations involve onlyAA-type spin pairs consisting of spins wit
identical chemical shifts. However, for anA2B-type system with
coupling strengthsDAB and DAA of similar size, the sideban
pattern does not provide unambiguous access to the cou
strengths. Furthermore, the spectral resolution achievable i
MAS sidebands suffers from two effects as compared to
centerband: First, spin correlations of higher order contrib
to the residual dipolar linewidth increasingly with the sideba
order and, second, the interference of chemical shift and dip
interaction gives rise to more pronounced line splitting.

Although, from an experimental point of view, the sideba
patterns of one-pulse MAS spectra may appear to be the
direct way to combine information about dipolar interactio
with chemical shifts, they bear, in fact, a major disadvanta
because the signal observed in a one-pulse experiment is
specific and hence fails to embody the pair character of
dipolar interaction. Thus, the experimental approach shoul
modified by introducing a means to detect a pair-specific N
signal.

3. 1H MULTIPLE-QUANTUM SPECTROSCOPY

In the previous section, the promising potential of fast M
as a method for narrowing resonance lines and, thus, un
ering chemical shift information in1H solid-state spectra wa
demonstrated. However, the simple one-pulse experiment i
particularly well suited to obtaining information on both che
ical shifts and dipolar interactions, because the detected s

is spin-specific and does not reflect the pair character inh
ent to the dominating dipolar two-spin correlations. In ord
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to improve the spectroscopic approach under MAS, the exp
iment should take into account the major role of such tw
spin correlations by detecting resonances of dipolar-coup
spin pairs. Therefore, in this section, the spectroscopy of s
pairs, i.e., double-quantum (DQ) spectroscopy, is introduc
In the following, we will discuss the theoretical backgroun
and the experimental realization as well as the information c
tent of DQ MAS spectra, in particular the signal intensity, th
excitation behavior, and the characteristic DQ MAS sideba
patterns.

Furthermore, this section includes experimental approac
to higher quantum orders of dipolar-coupled spins, in partic
lar to triple-quantum (TQ) spectroscopy of methyl groups (38),
because in the TQ state the three methyl protons act as a
gle entity. The quantum order observed in TQ spectra, howe
no longer reflects the pair character of the dipolar interacti
Instead, it is based on three-spin correlations which, in g
eral, broaden resonance lines by introducing a homogene
character to the system. However, in the special case of me
groups, which usually rotate rapidly about their threefold sy
metry axis, the three interproton pair couplings are equival
and the inhomogeneous character is preserved even for a th
spin system.

3.1. Two-Spin Correlations and
Double-Quantum Coherences

The application of a hard radiofrequency (RF) pulse, whi
rotates the spin part of the nuclear wavefunction by 90◦ (hence-
forth written as 90◦q, with q = ±x,±y denoting the direction
of irradiation or, equivalently, the pulse phase), transfers a s
system from its thermal equilibrium state ˆρ(0), i.e., longitudi-
nal magnetization∝ Î z in the presence of an external magnet
field B0||z, into a nonequilibrium state of detectable transver
magnetization:

ρ̂(0) =
∑

i

Î
(i )
z = T̂1,0

90◦y→
∑

i

Î
(i )
x =

1√
2

∑
i

(
Î

(i )
+ + Î

(i )
−
)

= 1√
2

(−T̂1,1+ T̂1,−1). [67]

Representing ˆρ by the Cartesian componentsÎ q of the nu-
clear spin operator is instructive as long as the orientation
the macroscopic magnetization in the sample can be identi
with the orientationq of the component̂I q. In a more general
context, particularly when correlated spin states are conside
rotations of the spin part are easier to handle using the com
nentsT̂ l ,m of spherical tensor operators (see Section 2.2). F
systems with coupled spinsI = 1

2, note that the rankl and the
orderm reflect the number of correlated spins and the cohere
order, respectively.

er-
er

After a 90y pulse, considered an infinitely shortδ pulse, a
system of two dipolar-coupled spinsi and j oscillates between
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a state of transverse magnetization (Î
(i )
x + Î

( j )
x ) and that of a

two-spin correlation (̂T
(i j )
2,1 + T̂

(i j )
2,−1):

ρ̂(i j )(t)∝ ( Î (i )
x + Î

( j )
x

)
cos
(
ω

(i j )
D t

)+ i
(
T̂

(i j )
2,1 + T̂

(i j )
2,−1

)
sin
(
ω

(i j )
D t

)
.

[68]

The latter is also termed antiphase magnetization, since it
sists of mixed productŝI y Î z, i.e., a product of a transverse and
longitudinal Î -component (see below, Eq. [69]). In Eq. [67] th
phase of the oscillation is shifted between the transverse an
antiphase state byπ2 , while the oscillation frequency is dete
mined by the dipolar coupling strength:ω(i j )

D = 3D(i j ) (see also
Eq. [21]). In1H multispin systems, however, the dipolar inte
action leads further to the generation of higher spin correlati
and the evolution of the system can therefore not be descr
by a simple oscillation, but in an approximate way throug
series expansion:

ρ̂(t)− ρ̂(0)∝ − i t

1!

[
N∑

i< j

Ĥ
(i j )
D ,

N∑
i=1

Î
(i )
x

]

+ (i t )2

2!

[
N∑

i< j

Ĥ
(i j )
D ,

[
N∑

i< j

Ĥ
(i j )
D ,

N∑
i=1

Î
(i )
x

]]

± · · · ∝ − i t

1!
·

N∑
i< j

a(i j )
(
T̂

(i j )
2,1 + T̂

(i j )
2,−1

)+ (i t )2

2!

·
(

N∑
i=1

b(i ) Î
(i )
x + i

N∑
i< j

k 6=i, j

c(i jk )
(
T̂

(ik)
2,1 − T̂

(ik)
2,−1

) · Î ( j )
z

+ i
N∑

i< j
k 6=i, j

d(i jk )
(
Î

(i )
x Î

( j )
z Î

(k)
z +

(
Î

(i )
+ Î

(k)
− − Î

(i )
− Î

(k)
+
) · Î ( j )

y

))

± · · · . [69]

The leading term, which is linear with respect to time,

i · a(i j )t
(
T̂

(i j )
2,1 + T̂

(i j )
2,−1

) = − 1√
2

a(i j )t
(
Î

(i )
z Î

( j )
y + Î

(i )
y Î

( j )
z

)
, [70]

again correlates two spinsi and j in terms of an antiphase mag
netization. The scaling factora(i j ) is identical to the spatial par
ω

(i j )
D . Therefore, the coupling strengthD(i j ) determines the con

tribution of the respective two-spin correlation after the evo
tion timet through the productD(i j ) · t .

A single spinI = 1
2 can occupy a nonequilibrium state b

forming a coherent superposition of two states with the magn
spin-quantum numbersM = + 1

2 and M = − 1
2, respectively.

Due to the difference1M = 1, this coherence is termed singl
quantum coherence (SQC). The term (T̂

(i j )
2,1 + T̂

(i j )
2,−1) correlates
two spins, but the spins do not yet behave as a single entity. T
is clear from both the quantum orderm= ±1 of the tensor com-
Q COHERENCES 171
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ponents and from the notation in the form of the spin operato

( Î
(i )
z Î

( j )
y + Î

(i )
y Î

( j )
z )—the latter showing the presence of product

of different componentŝI y and Î z for both spinsi and j , with
the spins occupying states of transverse and longitudinal ma
netization, respectively. Therefore, only one spin in the produc
is subject to the evolution under the chemical shift Hamiltonia

ĤCS= ω(i )
CSÎ

(i )
z + ω( j )

CSÎ
( j )
z , i.e.,

[(
Î

(i )
z Î

( j )
y + Î

(i )
y Î

( j )
z

)
,
(
ω

(i )
CSÎ

(i )
z + ω( j )

CSÎ
( j )
z

)]
= ω(i )

CSÎ
(i )
x Î

( j )
z + ω( j )

CSÎ
(i )
z Î

( j )
x , [71]

and the two spins evolve differently, which means that the sta
dephases. In order to observe a dipolar-coupled spin pair a
single entity, it has to have a common resonance frequency wh
differs from those of the single spins. Therefore, in the produc

Î
(i )
q Î

( j )
q′ which represent two-spin correlations, no componen

with q,q′ = ±z may be involved. The productŝI
(i )
q Î

( j )
q′ with

q,q′ = x, y can be expressed as linear combinations of produc

of shift operatorŝI
(i )
± :

Î
(i )
x Î

( j )
x ∝

(
Î

(i )
+ Î

( j )
+ + Î

(i )
− Î

( j )
−
)+ ( Î (i )

+ Î
( j )
− + Î

(i )
− Î

( j )
+
)

Î
(i )
y Î

( j )
y ∝ −

(
Î

(i )
+ Î

( j )
+ + Î

(i )
− Î

( j )
−
)+ ( Î (i )

+ Î
( j )
− + Î

(i )
− Î

( j )
+
)

[72]
i Î

(i )
x Î

( j )
y ∝

(
Î

(i )
+ Î

( j )
+ − Î

(i )
− Î

( j )
−
)+ ( Î (i )

+ Î
( j )
− − Î

(i )
− Î

( j )
+
)

i Î
(i )
y Î

( j )
x ∝

(
Î

(i )
+ Î

( j )
+ − Î

(i )
− Î

( j )
−
)− ( Î (i )

+ Î
( j )
− − Î

(i )
− Î

( j )
+
)
.

In this notation, the involved coherence orders become obvio
Î

(i )
+ Î

( j )
+ and Î

(i )
− Î

( j )
− denote transitions between the states|↓↓〉 →

|↑↑〉 and|↑↑〉 → |↓↓〉, corresponding toM = −1→ M = 1
and M = 1→ M = −1, respectively. A state represented by
these operators is then characterized by a coherent superpos
of the two non-equilibrium states|↓↓〉 and|↑↑〉. Since|↓↓〉 and
|↑↑〉 differ by1M = ±2, the state is called a double-quantum
coherence (DQC). Using spherical tensor operators,

Î
(i )
± Î

( j )
± = T̂

(i j )
2,±2, [73]

the change of the magnetic spin-quantum number1M , i.e., the
coherence order, is directly reflected by the orderm = ±2 of
the componentŝT l ,m. Besides the DQC terms, terms consist
ing of products of shift operators with different signs,Î

(i )
+ Î

( j )
−

and Î
(i )
− Î

( j )
+ , are also present in Eq. [72]; these are known from

the exchange term of the homonuclear dipolar interaction (s
Eq. [10]), and represent coherences involving the states| ↓↑〉
and| ↑↓〉. Since1M = 0, these are termed zero-quantum co
herences (ZQCs).

The consideration of the productŝI
(i )
q Î

( j )
q′ with q,q′ =
hisx, y aims at the creation of a state which combines two
dipolar-coupled spins with a single resonance frequency. ZQCs,
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however, evolve under the chemical shift as follows:

[(
Î

(i )
+ Î

( j )
− ± Î

(i )
− Î

( j )
+
)
,
(
ω

(i )
CSÎ

(i )
z + ω( j )

CSÎ
( j )
z

)]
= (ω(i )

CS− ω( j )
CS

)(
Î

(i )
+ Î

( j )
− ∓ Î

(i )
− Î

( j )
+
)
. [74]

Hence, the commutator vanishes for pairs of spins with id
tical chemical shiftω(i )

CS = ω( j )
CS, and ZQCs are not suitable fo

distinguishing signals of pairs of like spins in the spectrum.
DQCs, on the contrary, the corresponding commutator does
vanish in any case, because the resonance frequency of a
results from the sumω(i )

CS+ω( j )
CSof the frequencies of the involve

spinsi and j (63):

[(
Î

(i )
+ Î

( j )
+ ± Î

(i )
− Î

( j )
−
)
,
(
ω

(i )
CSÎ

(i )
z + ω( j )

CSÎ
( j )
z

)]
= (ω(i )

CS+ ω( j )
CS

)(
Î

(i )
+ Î

( j )
+ ∓ Î

(i )
− Î

( j )
−
)
. [75]

Therefore, DQCs offer themselves as a tool for obse
ing two-spin correlations in NMR spectra. It should be no
that a state of pure DQC without any ZQC contributions c
be easily obtained from linear combinations of the terms
Eq. [72].

3.2. Excitation of DQ Coherences

3.2.1. Two-Pulse Excitation under Static Conditions

In order to transform dipolar two-spin correlations rep
sented by the term (T̂

(i j )
2,1 + T̂

(i j )
2,−1) into DQCs, the orderm of

the tensor componentŝT l ,m has to be increased fromm = ±1
to m = ±2. Since, under rotation operations, the compone
T̂ l ,m of spherical tensor operators transform into linear com
nations of components of the same rankl , but different orders
m′ = −l , . . . , l , the wanted transition̂T

(i j )
2,±1→ T̂

(i j )
2,±2 can be ac-

complished through the application of a RF pulse which ma
the spin part of the wavefunction rotate (31, 95). Such a RF
pulse acts in the form of a propagatorL̂Pulse= exp(∓iβ Î q) on
the system, whereq denotes the orientation of the applied R
field or, equivalently, the pulse phase. The flip angleβ is given
by the product of the magnetogyric ratioγI , the transverse mag
netic field B1, and the pulse durationtp: β = ω1tp = γI B1tp.
Hence, RF pulses transform a two-spin correlation as follo
(105, 15),

ρ̂(0)
90◦y→ Î

(i )
x + Î

( j )
x

Ĥ
(i j )
D−→ · · · + (T̂ (i j )

2,1 + T̂
(i j )
2,−1

)+ · · ·
βx→ −i

√
3

8
T̂−2,0 sin(2β)+ (T̂ (i j )

2,1 + T̂
(i j )
2,−1

)
cos(2β)

i ( (i j ) (i j ) )
−
2

T̂2,2 − T̂2,−2 sin(2β)
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or
not
QC

rv-
d

an
in

e-

nts
bi-

es

F

ws

or
βy→ (

T̂
(i j )
2,1 + T̂

(i j )
2,−1

)
cosβ − (T̂ (i j )

2,2 − T̂
(i j )
2,−2

)
sinβ [76]

and

ρ̂(0)
90◦x→ −( Î (i )

y + Î
( j )
y

)
Ĥ

(i j )
D−→ · · · + (T̂ (i j )

2,1 − T̂
(i j )
2,−1

)+ · · ·
βx→ (

T̂
(i j )
2,1 − T̂

(i j )
2,−1

)
cosβ − i

(
T̂

(i j )
2,2 + T̂

(i j )
2,−2

)
sinβ

or

βy→−
√

3

8
T̂2,0 sin(2β)+ (T̂ (i j )

2,1 − T̂
(i j )
2,−1

)
cos(2β)

− 1

2

(
T̂

(i j )
2,2 + T̂

(i j )
2,−2

)
sin(2β), [77]

for the first RF pulse applied withy-phase orx-phase, respec-
tively. Forβ = 90◦ and two pulses with identical phases (or wit
phases of different sign), the two-spin correlation (T̂

(i j )
2,1 ± T̂

(i j )
2,−1)

is completely transformed into a DQC (T̂
(i j )
2,2 ± T̂

(i j )
2,−2). In the

limit of ω(i j )
D τ ¿ 1, the weight of the DQC is determined by

the coefficienta(i j )τ = ω(i j )
D τ (see Eq. [69]) and, hence, by the

product of the dipolar coupling strengthD(i j ) = 1
3ω

(i j )
D and the

delayτ between the two pulses.

3.2.2. Time Reversal and Detection

In NMR spectroscopy, the phase-sensitive signal detect
can formally be considered asS(t) = Tr[ Î − · ρ̂(t)]. DQCs, how-
ever, cannot be observed in this direct manner, because

Tr
[(

Î
(i )
− + Î

( j )
−
) · (T̂ (i j )

2,2 ± T̂
(i j )
2,−2

)] = 0. [78]

Whenever direct detection is not possible or unfavorab
so-called indirect detection techniques and multidimensio
methods come into play (31). For multiple-quantum coherence
(MQCs), the technique of time reversal combined with cohe
ence selection procedures, i.e., pulse phase cycling or magn
field gradients, is well established (114, 79, 85).

Formally, the excitation of MQCs can be represented by
propagation ˆρ(τ )= L̂

+
exc(τ )ρ̂(0)L̂exc(τ ) with the excitation prop-

agator L̂exc(τ ) = exp(i Ĥexcτ ), where Ĥexc is the excitation
Hamiltonian. A further propagation with an argument of op
posite sign, i.e.,−i Ĥexcτ , completely restores the initial state
The sign change can be attributed to the timeτ and hence can be
considered a time reversal. Obviously, the same result is obtai
by changing the sign of the Hamiltonian, so that−Ĥexc can be
viewed as a reconversion operatorĤ rec. For the two-pulse exci-

tation scheme 90◦x–τ–90◦−x, the excitation Hamiltonian is given
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by

ρ̂(τ ) = L̂−x L̂ D(τ )L̂xρ̂(0)L̂
+
x L̂
+
D(τ )L̂

+
−x

= exp

(
i
π

2
Î x

)
exp(−i Ĥ Dτ ) exp

(
−i
π

2
Î x

)

× ρ̂(0) exp

(
i
π

2
Î x

)
exp(i Ĥ Dτ ) exp

(
−i
π

2
Î x

)

= exp

(
−i

[
exp

(
i
π

2
Î x

)
Ĥ D exp

(
−i
π

2
Î x

)]
τ

)
ρ̂(0)

× exp

(
i

[
exp

(
i
π

2
Î x

)
Ĥ D exp

(
−i
π

2
Î x

)]
τ

)

= exp

−i

1

2
T̂2,0+

√
3

8
(T̂2,2+ T̂2,−2)︸ ︷︷ ︸

Ĥexc

 τ
 ρ̂(0)

× exp

i

1

2
T̂2,0+

√
3

8
(L̂2,2+ T̂2,−2)︸ ︷︷ ︸

Ĥ
+
exc

 τ
 . [79]

Assuming that the RF power exceeds all internal interacti
and infinitely shortδ pulses are applied, the propagation by su
RF pulses can be understood as a transformation of the re
ence frame of the internal (in our case dipolar) interactio
as is expressed by the identity exp(exp(i B)i A exp(−i B))=
exp(i B) exp(i A) exp(−i B). The interaction is then given in the
so-called toggling frame, the orientation of which results fro
the action of the RF pulses applied on the rotating fram
Effectively, this means that the spin parts of the interact
Hamiltonians are switched by RF pulses (51).

In order to accomplish time reversal, the sign or, alternative
the phase ofĤexc has to be manipulated. Formally, the pha
behavior of the componentŝT l ,m of spherical tensor operator
is based on the relation (104)

exp(iφ Î z)T̂ l ,m exp(−iφ Î z) = T̂ l ,m exp(imφ). [80]

Them-fold phase sensitivity of the componentsT̂ l ,m is also
reflected in the commutator [T̂ l ,m, Î z]= − mT̂ l ,m. Hence, a
phase shift of the two-pulse excitation scheme (90◦

x–τ–90◦−x)→
(90◦x+φ–τ–90◦−x+φ) gives rise to the following modification of

the excitation Hamiltonian̂Hexc:

L̂−x+φ L̂ D(τ )L̂x+φ( [
1 ˆ

√
3 ˆ ˆ

] )

= exp −i

2
T2,0+

8
(T2,2+ T2,−2) exp(2iφ) τ . [81]
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A basic feature of the dipolar interaction, also entering in
the above algebra, is that it is insensitive to phase shifts,

exp(−iφ Î z) exp(−i Ĥ Dτ ) exp(iφ Î z) = exp(−i Ĥ Dτ ), [82]

because [̂T2,0, Î z] = 0. Corresponding to the coherence order
it is clear from Eq. [80] that the term representing the ZQC,T̂2,0,
is not affected by phase shifts, while the term representing
DQC, (T̂2,2+ T̂2,−2), is doubly sensitive. Shifting the phases o
both pulses byπ2 thus results in a phase factor exp(2i · π2 ) = −1
for the DQCs, providing time reversal for the DQ part of th
excitation Hamiltonian.

3.2.3. Selection of Coherence Orders

Combining two-pulse excitation and reconversion und
time reversal, the DQ experiment adopts the form (90◦

x–
τ–90◦−x)exc(90◦y–τ–90◦−y)rec. The reconversion leads to a stat
of longitudinal magnetization, whose amplitude reflects the D
signal; this can be read out by applying a further 90◦ pulse. It is
necessary to ensure that all contributions from unwanted coh
ence pathways to the signal are suppressed; i.e., the follow

pathway is to be selected: 0
exc→ ±2

rec→ 0
read→ −1. Since coher-

ences are sensitive to pulse-phase shifts according to their o
(see Eq. [80]), the use of phase cycles of the RF pulses to se
the desired coherence pathway is well established. A suita
phase cycle can be easily derived by obeying the following tw
fundamental rules (14):

• If the phase of a pulse or group of pulses is shifted byφ,
then a coherence undergoing a change in coherence orde
1p = p′ − p experiences a phase shift of−φ1p, as detected
by the receiver.
• If a phase cycle uses steps of 360◦/N, along with the desired

pathway1p, the pathways1p± n · N, wheren = 1, 2, 3, . . .,
will also be selected, while all other pathways will be sup
ressed.

Hence, the selection of a pathway 0
exc→ ±2

rec→ 0
read→ −1

requires two nested 4-step phase cycles, each in steps ofπ
2 , re-

sulting in an overall 16-step phase cycle. They select1p =
±2,±6,±10, . . . and1p = ±1,±5,±9, . . . during the recon-
version and the final detection period, respectively.

3.2.4. Short-Time Excitation under MAS

An essential part of1H DQ spectroscopy is the applica
tion of MAS, which can straightforwardly be incorporated int
our consideration of the excitation of DQCs by replacing th
time-independent spatial part by the respective rotor-modula

term in the dipolar Hamiltonian̂H
(i j )
D (t) = Â

(i j )
(t) · T̂ (i j )

2,0 , with

Â
(i j )

(t) being defined in Eq. [29] (46). Considering again the
two-pulse excitation scheme, the weight of a two-spin cor
lation immediately before the second pulse or, equivalen

the weight of a DQC immediately after the second pulse is,
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in the limit of short excitation times, given by the integrat
spatial partÄ(i j )

D (0, τ ) of the dipolar interaction, according t
Eq. [30]. Note thatÄ(i j )

D (0, τ ) is not normalized with respect t
the time interval [0, τ ] and hence represents a phase rather th
frequency.

Ä
(i j )
D (0, τ ) =

∫ τ

0
ω

(i j )
D (t) dt = ω

(i j )
D

2ωR

·
[

1

2
sin2 βi j (sin(2ωRτ + 2γi j )− sin(2γi j ))

−
√

2 sin 2βi j (sin(ωRτ + γi j )− sinγi j )

]
. [83]

The anglesβi j andγi j denote the azimuthal and polar a
gle of the internuclear vectorr i j in the ROT frame. In the cas
of powder samples, an isotropic average over both these
gles has to be performed. Being a second-rank tensor, the
lar interaction is subject to a twofold rotor modulation, one
the MAS frequencyωR and the other by twice the frequen
2ωR. The overall weight of a DQC is thus determined by
product of an integral rotor-phase factor and the ratioω

(i j )
D /ωR,

whereω(i j )
D = 3D(i j ) (see Eq. [21]).

Since the experimental detection of DQCs requires a re
version period, during which the dipolar interaction acts in
same, but effectively reversed, way as during the excitation
integralÄ(i j )

D enters twice in the weighting factor of the resulti
DQC signal:Ä(i j )

D,exc= Ä(i j )
D (0, τ ) andÄ(i j )

D,rec = Ä(i j )
D (τ, 2τ ), for

the excitation during [0, τ ] and the reconversion during [τ, 2τ ],
respectively. In the case of a single spin pair, the integrated sp
partsÄ(i j )

D,excandÄ(i j )
D,rec become the arguments of sine functio

as can be seen from Eq. [67].
Expanding this sine dependence into a series, as is nece

for the consideration of multispin systems and as has been
formed in Eq. [68], the leading term determining the weight o
DQC is simply given by the productÄ(i j )

D,exc ·Ä(i j )
D,rec. Therefore,

in the limit Ä(i j )
D,exc, Ä

(i j )
D,rec ¿ 1, i.e., for short excitation time

τ or weak couplingsD(i j ), the signal intensityI (i j )
DQ of a DQC

involving spinsi and j depends on the strengthD(i j ) of the un-
derlying dipolar coupling and the applied excitation timeτ in
the following simple form:

I (i j )
DQ ∝ sin

(
Ä

(i j )
D (0, τ )

) · sin
(
Ä

(i j )
D (τ, 2τ )

)
≈ Ä(i j )

D (0, τ ) ·Ä(i j )
D (τ, 2τ )+ · · ·

∝ (D(i j )
)2
τ 2+ · · ·

∝ τ 2

r 6
i j

+ · · · . [84]
In Fig. 11, the DQ intensityIDQ is plotted in two dimen-
sions versus the dipolar coupling strengthD(i j ) and the excita-
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FIG. 11. Calculated DQ excitation profile for a dipolar-coupled spin pair,
which the pulse sequence (90◦x–τ–90◦−x)exc(90◦y–τ–90◦−y)rec(90◦x)read is applied
under MAS. The contour level diagram shows the DQ signal intensityIDQ versus
the dipolar coupling strengthD(i j ) and the excitation timeτ , both normalized
with respect to MAS. The two curves on the right show vertical and horizon
slices taken from the two-dimensional plot: A vertical slice (above) atτ = τR/2
along the coupling axis displaysIDQ(2π · D(i j )/ωR), and a horizontal slice
(below) at 2π · D(i j ) = 2ωR along the time axis displaysIDQ(τ/τR).

tion timeτ for a single spin-pair (i j ). Both axes are normalized
with respect to MAS, i.e.,D(i j ) to the MAS frequencyωR and
τ to the rotor periodτR. It is clear that the excitation profile is
symmetric aboutτ = 1

2τR, reflecting the refocusing procedure
Moreover, three regions of efficient DQ excitation can be ide
tified: the first and most efficient atτ = 1

2τR and two others at
aboutτ = 0.06τR andτ = 0.94τR. From the two-dimensiona
contour level diagram, two DQ excitation curves, one with r
spect to the excitation time and the other with respect to
coupling strength, are extracted and displayed on the righ
Fig. 11. It is apparent thatIDQ decreases continuously, whe
the MAS frequency exceeds the dipolar coupling strength, i
for D(i j )τR/2π <1. For D(i j )τR/2π >1, the system shows an
oscillating DQ excitation behavior.

Using model samples providing largely isolated spin pa
such excitation curves can be demonstrated experimentally,
shown in Fig. 12. Crystalline tribromoacetic acid, CBr3COOH,
forms hydrogen-bonded dimers and, in this way, contains p
of acidic protons with an interproton distance of 0.265 nm,
corresponding to a dipolar coupling ofD(i j )= 2π · 6.5 kHz.
(The interproton distance was obtained from1H MAS side-
band patterns, which were evaluated on the basis of neu
scattering results and previous NMR data for trichloroace
acid (62, 29).) These proton pairs are separated from ea

other by bulky CBr3 groups, ensuring an interpair distance
of >0.5 nm. For this model compound, the pulse sequence
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FIG. 12. Comparison of calculated DQ excitation curves with experimen
data, obtained for the proton pairs in tribromoacetic acid. The pulse sequ
used is (90◦x–τ–90◦−x)exc(90◦y–τ–90◦−y)rec(90◦x)read and the MAS frequency is
5 kHz. The dotted line represents a direct calculation based on Eqs. [82
[83], while the solid line results from a numerical simulation including fin
pulse-length effects (3µs in the experiments).

(90◦x–τ–90◦−x)exc(90◦y–τ–90◦−y)rec(90◦x)read was applied at a
MAS frequency of 5 kHz, corresponding toτR = 200µs, andτ
was varied between 0 andτR. In Fig. 12, the experimental DQ
intensities are compared to calculated curves. On account o
inclusion of finite pulse-length effects (3µs in the experiments)
the numerical simulation (solid line) resembles the slight as
metry of the experimental data points, while the pure spin-
calculation (dotted line) is perfectly symmetric.

3.2.5. MAS and Time Reversal

The marked efficiency atτ = 1
2τR in the DQ excitation profile

can be explained recalling Eq. [82]. In the special case ofτ =
1
2τR, the angular dependence of the integrated spatial part o
dipolar interaction simplifies to (37)

Ä
(i j )
D

(
0,
τR

2

)
= −Ä(i j )

D

(
τR

2
, τR

)
= ω

(i j )
D

ωR
·
√

2 sin 2βi j sinγi j ,

[85]

and the resulting phase factors of excitation and reconver
differ only in their signs. With respect to the aspects of MQ MA
spectroscopy considered later in this review, it is importan
note that it is the above simplification (Eq. [84]) which allow
the signals in MQ spectra and, in particular, the MAS sideb
patterns to be recorded with pure absorptive phase.
Moreover, the sign change encountered in Eq. [84] betw
excitation and reconversion means that forτ = 1

2τR MAS itself
Q COHERENCES 175
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provides the sign change which is vital to achieve time reve
and which is, in the static case, accomplished by a RF pulse p
shift of π2 . Therefore, the combination of pulse-phase-induc
and MAS-induced sign changes makes them cancel each o
(in the following section, this feature will form the basis for lon
time excitation under dipolar recoupling). However, even-or
quantum coherences are reconverted irrespective of this ca
ing phenomenon. Both for formally correctly “time-reverse
HamiltoniansĤ rec = −Ĥexcand forĤ rec = Ĥexc, reconversion
is accomplished, because for 2m-quantum coherences, repr
sented by (̂T l ,2m− T̂ l ,−2m), the sign change of the Hamiltonia
can be transformed into a phase factor or, equivalently, in
sign change of the state resulting after the reconversion:

• “Time-reversed” HamiltonianŝH rec = −Ĥexc:

exp(−i Ĥ recτ ) exp(−i Ĥexcτ ) Î z exp(i Ĥexcτ ) exp(i Ĥ recτ ) = Î z.

[86]

• Equal HamiltoniansĤ rec = Ĥexc:

exp(−i Ĥ recτ ) exp(−i Ĥexcτ ) Î z exp(i Ĥexcτ )︸ ︷︷ ︸
∝(T̂ l ,2m−T̂ l ,−2m)

exp(i Ĥ recτ )

∝ exp
(
i
π

2
Î z

)
exp(i Ĥexcτ ) exp

(
−i
π

2
Î z

)
(T̂ l ,2m− T̂ l ,−2m)

× exp
(
i
π

2
Î z

)
exp(−i Ĥexcτ ) exp

(
−i
π

2
Î z

)
= exp(imπ ) exp

(
i
π

2
Î z

)
exp(i Ĥexcτ )(T̂ l ,2m + T̂ l ,−2m)

× exp(−i Ĥexcτ ) exp
(
−i
π

2
Î z

)
= exp(imπ ) exp

(
i
π

2
Î z

)
Î z exp

(
−i
π

2
Î z

)
= (−1)m Î z. [87]

As a consequence of this, even-order quantum cohere
can be successfully reconverted through time reversal irres
tive of the pulse phases. For odd-order quantum coheren
represented by (̂T l ,2m+1 − T̂ l ,−(2m+1)), in contrast, the sign
of the phase factor exp(±i (2m + 1)π2 ) = ±i · (−1)m does
depend on the sign of the order±(2m+ 1) of the operator
T̂ l ,±(2m+1). Hence, upon a pulse-phase shift ofπ

2 , the linear
combination (̂T l ,2m+1 − T̂ l ,−(2m+1)) changes its symmetry to
(T̂ l ,2m+1 + T̂ l ,−(2m+1)), and the pulse phases in the sequen
have to be adapted accordingly.

3.2.6. Long-Time Excitation and Dipolar Recoupling
eenAccording to the results of the previous section, the two-
pulse excitation scheme 90◦x–τ–90◦−x for DQCs is limited, under
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MAS conditions, to excitation times 0<τ ≤ τR/2, because for
τR/2< τ ≤ τR the sign of the spatial partÄ(i j )

D is inverted by the
rotor modulation, reflecting the refocusing action of MAS. Th
limitation means that, for a given MAS frequency, only DQ
based on dipolar couplings stronger than a minimum coup
can be efficiently excited, since the DQ intensity depends
the product (D(i j )τ )2 of the coupling strength and the excitatio
time. At that point, the marked sensitivity of DQCs to inte
nuclear distances,I (i j )

DQ ∝ r−6
i j , which is in terms of selectivity

an advantage of the method, would result in the consider
disadvantage that longer-range distances are only accessib
relatively low MAS frequencies, which, on the other hand, w
not provide sufficient spectral resolution, if stronger dipolar c
plings are also present in the sample. Therefore, the choic
spinning frequencyωR and excitation timeτexc available in an
experiment need to be more flexible and independent of e
other, which basically requires excitation times in the rangeτ >

τR/2.
In order to gain this flexibility, the refocusing effect or, equ

alently, the dipolar decoupling provided by MAS has to be c
celed or, at least, reduced during the periods of excitation
reconversion. Since interrupting the sample spinning on t
scales far below milliseconds is technically not possible, the
eraging process in the spatial part has to be compensated
counterrotation of the spin part, which, in this way, recoup
the dipolar interaction (12, 28). In the past decade, numero
pulse sequences providing dipolar recoupling have been d
oped (e.g., (74, 106, 83)), some of which include compensation
for experimental imperfections or other interfering interactio
(e.g., theC7 sequence (67, 57)). In this review, we want to
focus on a rather simple, but quite flexible, approach, ba
on the two-pulse scheme discussed above, which was te
“back-to-back” (BABA) (32) and has already been applied su
cessfully to several systems (32, 65, 98, 47, 97, 18, 20).

Under MAS, the application of two 90◦ pulses spaced b
a time intervalτ yields maximum excitation efficiency to
gether with a simple phase behavior, whenτ = τR/2. If such
a pulse sequence 90◦q–τR/2–90◦−q (henceforth referred to a
q–q̄) is repeated, only the sign of the spatial part of the
citation HamiltonianĤexc is inverted within a rotor period
namely between the first and the second half of the per
i.e.,Ä(i j )

D (0, τR/2)= −Ä(i j )
D (τR/2, τR) (see Eqs. [82] and [84]

However, such a sign inversion can also be achieved by shi
the phases of both pulses byπ2 , as was discussed in Section 3.2
Hence, a simple alternation of segmentsx–x̄ andy–ȳ provides
dipolar recoupling and opens up the possibility to “pump” DQ
for excitation timesτexc= N · (τR/2), consisting of integer mul
tiples of half rotor periods. In Fig. 13c, such a recoupling pu
sequence is displayed, together with a schematic represen
of the MQ experiment (Fig. 13a) and the two-pulse excitat
scheme (Fig. 13b).

The recoupling effect of a pulse sequence consisting of a

nating segmentsx–x̄ and y–ȳ becomes very clear when using
the propagator formalism (the propagators on the right-hand s
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FIG. 13. (a) Schematic representation of a MQ experiment with its char
teristic periods: excitation of MQCs, reconversion to longitudinal magnetizat
and detection as SQCs. (The evolution during the MQ dimensiont1 is skipped
here and will be discussed in Sections 3.4 and 3.5.) (b) Two-pulse segment
τ = τR/2. (c) Basic recoupling pulse sequence of the formx–x̄ y–ȳ, where
τexc= nexc · τR. (d) Coherence transfer pathway diagram.

of ρ̂(0) are skipped):

L̂−y L̂ D

(
τR

2
, τR

)
L̂ y L̂−x L̂ D

(
0,
τR

2

)
L̂xρ̂ (0) · · ·

= L̂
+
y L̂
+
D

(
0,
τR

2

)
L̂ y L̂

+
x L̂ D

(
0,
τR

2

)
L̂xρ̂ (0) · · ·

= L̂
+
x L̂ D

(
0,
τR

2

)
L̂x L̂

+
x L̂ D

(
0,
τR

2

)
L̂xρ̂ (0) · · ·

= L̂
+
x L̂ D

(
0,
τR

2

)
L̂ D

(
0,
τR

2

)
L̂xρ̂ (0) · · · . [88]

These transformations are based on the following ide
ties: L̂±q= L̂

+
∓q for pulses of phaseq= x, y; L̂ D(τR/2, τR) =

L̂
+
D(0, τR/2) due to the MAS-induced sign inversion, i.e

time reversal, between [0, τR/2] and [τR/2, τR]; L̂
+
y L̂
+
D L̂ y =

L̂
+
x L̂ D L̂x due to the sign inversion of the excitation Hamilto

nian arising from a pulse-phase shift byπ2 . It is then apparent
that the system is propagated twice under the dipolar interact
i.e., the excitation time is doubled.

The distinction as to whether the pulse sequence (x–x̄)(y–ȳ)
is to be regarded as a pure excitation scheme [(. . .)(. . .)]exc or
ide
as a combination of excitation and reconversion (. . .)exc(. . .)rec

depends on whether a particular coherence order is selected
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FIG. 14. (a) Calculated DQ intensities for a single spin pair (solid lin
and for the leading two-spin term in the series expansion for multispin syst
(dotted line). The DQCs are excited during periodsτexc = N · τR/2 by an
alternating sequence of two-pulse segments (90◦

x–τR/2–90◦−x) and (90◦y–τR/2–
90◦−y). The initial slope where two-spin behavior predominates is magnifie
the inset. (b) Comparison of calculated and experimentally observed DQ s
intensities. The experiments (data points) were performed on tribromoa
acid, which is a H-H spin-pair model compound with a dipolar pair coupling
D(i j ) = 2π · 6.5 kHz. In both diagrams,IDQ is normalized with respect to the
signal of a one-pulse experiment.

between the two segments, e.g., by a phase cycle, or not.
means that the above pulse sequence, if applied only once
ways acts as a combined excitation and excitation/reconver
scheme and that the sequence has to undergo a phase c
procedure (or alternatively a gradient dephasing/rephasing
cedure) to select the desired coherence pathway.

In Fig. 14a, the signal intensity of two-spin DQCs is plott
versusD(i j )τexc in a so-called DQ buildup curve. The solid lin
represents the behavior of a single spin pair, while the do
line reflects the leading two-spin term in the series expans
for a multispin system. Due to the underlying series expans
the simple squared dependenceI (i j )

DQ ∝ (D(i j ))2τ 2
exc is a valid ap-

proximation only forD(i j )τexc/2π < 0.2, i.e., for weak dipolar
couplings or short excitation times. Subsequent to this short-t
behavior the DQ intensity enters an oscillatory regime, where
amplitude of the oscillation decreases with time, approach
for a single spin pair, the long-time limit of limτexc→∞ IDQ = 1

2.
Experimentally, such oscillating curves are rarely obser

in strongly coupled1H systems. Instead, in most cases the
perimental results are rather similar to the DQ buildup cu
obtained for tribromoacetic acid (data points in Fig. 14b). A
though tribromoacetic acid, considering its crystal structure
quite a reasonable model compound with largely isolated p
ton pairs, the DQ intensity decays before reaching the oscilla
regime. This marked loss of DQ signal is due to the interp
of a residual nonpair character of the sample and experime
imperfections.

Focusing first on the experimental side, the pulse seque
has to recouple the dipolar interaction under fast MAS con
tions, while compensating for RF imperfections and additio

interactions present in the sample, like a considerable CSA
the case of tribromoacetic acid. However, the recoupling a
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the compensating performance of the pulse sequence as
as its long-time stability is limited by experimental misadju
ments and other imperfections which obviously become m
important for increasing excitation times. Concerning fast M
applications to strongly dipolar-coupled systems, it is quite c
lenging to design pulse sequences combining dipolar recou
and error compensation in spite of experimental and techn
limitations. In this way, though still not for rigid1H systems, os
cillating DQ and TQ buildup curves have been recorded for13C
model systems (67, 30). In the special case of partially mobi
1H systems with well-defined dynamics, like liquid crystalli
phases, the oscillating regime has also been observed in1H DQ
buildup curves.

In “real” rigid 1H samples, the dense network of dipolar co
plings is obviously a further and important reason for the
served deviations from a pure spin-pair buildup behavior.
clear that with increasing excitation times, i.e., with increas
evolution time under dipolar recoupling conditions, the sys
develops its multispin character, and the buildup oscillations
damped out. As can already be shown by simulations of s
model spin systems (see Fig. 15), the interference of se
couplings of different strengths leads to the cancellation of
cillations, because different frequencies are then destruct
superimposed. In addition to this cancellation, in multispin s
tems, higher spin correlations and higher-order coherence
excited, thereby reducing the DQ signal intensity. This exc
tion behavior, focusing on the buildup of higher-order MQC
has been studied by Geenet al. (40) for the case of the pro
tons in adamantane under MAS conditions. On the one h
for long excitation times, the existence of 16-quantum co
ences demonstrates the dipolar recoupling efficiency achiev
by RF pulse sequences likeC7 (67) under fast MAS. On the
other hand, the results, which are obtained using a dense

FIG. 15. Simulated DQ buildup curves for different spin systems (so
lines) and the leading two-spin term from the series expansion in Eq. [68] (d
line). The three, four, and six spins are localized at the vertices of an equila
triangle, a square, a tetrahedron, and an octahedron, respectively. The DQ
intensity is normalized to the number of coupled pairs in the respective sy

in

nd
and the dashed lines indicate the long-time limit for DQ intensities, provided
that only two-spin DQCs are excited.



b

s
p

v
o
t

-

a
e
i

c

s
r

g

,
-s

v
o
r

e

a
i
t
t

w
l
s

the
In

pack-
in
it,
per-

long
pair
er-
pin

-
er

sity

d to
Cs,
pin
the
iv-
ses
cts to
id-
, in
mil-
ift

r
the
e

l re-
he
178 SCHNELL A

cubic spin system, provide clear evidence that, for short exc
tion times, the MQ signal-intensity distribution is dominated
DQCs and that, forD(i j )τexc/2π < 0.1, to a good approximation
onlyDQCs are generated.

In Fig. 15, simulated DQ buildup curves for different mu
tispin model systems are displayed, which shall be discu
briefly in the following. For short excitation times, all buildu
curves coincide with a simple squared dependenceIDQ ∝ D2,
determined by the strongest dipolar couplingD in the system,
as is characteristic for two spins (indicated by the dotted cur
It is observed that the excitation time, at which a deviation fr
the two-spin limit sets in, becomes shorter when the effec
couplingDeff becomes stronger:Deff = D in the two-spin sys-
tem; Deff = 3

√
2D ≈ 4.2D in the equilateral-triangular three

spin system;Deff ≈ 5.8D and Deff = 4
√

3D ≈ 6.9D in the
squared and tetrahedral four-spin systems, respectively; an
nally Deff ≈ 12.2D in the octahedral six-spin system.

In the triangular three-spin and the tetrahedral four-spin s
tem, all dipolar couplingsD(i j ) for all pairs (i j ) are of identical
strengthD, because all spins are equidistant (and an isotro
distribution of orientations is assumed). Consequently, the s
oscillation of the buildup curves is observed in both cas
with the frequency being determined by the effective coupl
strength, which isDeff = 4.2D and Deff = 5.8D in the three-
and four-spin cases, respectively. However, the presence of
plings of different strengths causes the oscillations to be dam
by destructive interference as the excitation time increase
the squared four-spin system or in the octahedral system, fo
ample, there are couplings of two different strengths: four tim
D and twice (1√

2
)3D, or 24 timesD and six times (1√

2
)3D,

respectively.
To a first approximation, the DQ buildup curves conver

for long excitation times, to intensity values of1
2, 1

6, 1
8, 1

12,
and 1

24 for a two-spin, an equilateral-triangular three-spin
square and a tetrahedral four-spin, and an octahedral six
system, respectively, because two-spin systems converge1

2
and the ratio of strongly coupled pairs in the systems is gi
by 1 : 3 : 4 : 6 : 12. Taking also the weaker pair couplings
( 1√

2
)3D ≈ 0.35D in the squared four-spin and the octahed

six-spin system into account results in a negligible deviation
1 : 3 : 4.2 : 6 : 12.4. In Fig. 15, these final values are indicat
by the dashed horizontal lines.

While a two-spin DQ buildup curve would oscillate precise
about its final value1

2, it is obvious that all curves of multispin
systems converge to higher values. In particular, for the tetr
dral four-spin system, a significantly higher DQ signal intens
is observed. This characteristic deviation is due to the fact
the final intensity values indicated by the horizontal lines in
diagram are based on a spin-pair approximation, neglecting
multispin systems can generate so-called multi-spin DQCs
a coherence order of 2, but involving more than two coup
spins. Using operator notation, a four-spin DQC of the spini ,
j , k andl takes the form (̂I
(i )
+ Î

( j )
+ Î

(k)
+ Î

(l )
− + Î

(i )
− Î

( j )
− Î

(k)
− Î

(l )
+ ). The
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contribution of such higher spin correlations increases with
density of the dipolar coupling network between the spins.
this respect, the tetrahedral system represents the closest
ing of four spins, giving rise to a significant intensity of four-sp
DQCs and hence to a marked deviation from the two-spin lim
whereas in the squared arrangement the two-spin character
sists to a larger extent.

Concluding these considerations, it is clear that, in “real”1H
systems, DQ buildup curves are expected to be damped for
excitation times because of the destructive interference of
couplings of different strengths and the generation of high
order coherences. While for short excitation times the two-s
approximation is valid for multispin systems of arbitrary geom
etry, the onset of the breakdown of this approximation for long
excitation times depends on the overall dipolar coupling den
in the system.

3.2.7. Chemical Shifts and Offsets

As was discussed in Section 3.1, DQCs are better suite
spectroscopically detecting two-spin correlations than ZQ
because the chemical shift of DQCs allows the involved s
pairs to be unambiguously resolved in the spectrum. On
other hand, the sensitivity of DQCs to chemical shifts or, equ
alently, to frequency offsets between the RF field of the pul
and the nuclear resonance frequencies requires these effe
be taken into account when the excitation of DQCs is cons
ered. For1H systems, the chemical shielding interactions can
most cases, be reduced to their isotropic part, so that the Ha
tonian combining the dipolar interaction with the chemical sh
is simply given by

Ĥ (t) =
N∑
i

ω
(i )
CSÎ

(i )
z +

N∑
i< j

ω
(i j )
D (t)T̂

(i j )
2,0 , [89]

where the sums include all spinsi and spin pairs (i j ), respec-
tively, of theN-spin system. In the following, we will conside
the special case of a two-spin system with both spins having
same chemical shiftω(i j )

CS or, equivalently, the same resonanc
offset, since the formulae are then easier to handle, but stil
flect the general features of the DQC excitation behavior. T
Hamiltonian is then

Ĥ
(i j )

(t) = ω(i j )
CS

(
Î

(i )
z + Î

( j )
z

)︸ ︷︷ ︸
Î

(i j )
z

+ω(i j )
D (t)T̂

(i j )
2,0 , [90]

and integration over the time interval [0, τ ] yields the respective
propagator,

exp

(
i
∫ τ

Ĥ
(i j )

(t) dt

)
= exp

(
iω(i j )

CS Î
(i j )
z τ + iÄ(i j )

D (0, τ )T̂
(i j )
2,0

)
.

0

[91]
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Subjecting a state of transverse magnetization, ˆρ∝ Î
(i )
x + Î

( j )
x ,

to such a propagation results in a two-spin correlation of
form

ρ̂(τ ) = exp
(
iω(i j )

CS Î
(i j )
z τ

)[
T̂

(i j )
2,1 + T̂

(i j )
2,−1

]
sin
(
Ä

(i j )
D (0, τ )

)
× exp

(−iω(i j )
CS Î

(i j )
z τ

)
= [T̂ (i j )

2,1 exp
(
iω(i j )

CSτ
)+ T̂

(i j )
2,−1 exp

(−iω(i j )
CSτ

)]
× sin

(
Ä

(i j )
D (0, τ )

)
= [(T̂ (i j )

2,1 + T̂
(i j )
2,−1

)
cos
(
ω

(i j )
CSτ

)+ i
(
T̂

(i j )
2,1 − T̂

(i j )
2,−1

)
× sin

(
ω

(i j )
CSτ

)]
sin
(
Ä

(i j )
D (0, τ )

)
. [92]

The chemical shift evolution can be written as a phase fa
exp(±iω(i j )

CSτ ), with the sign of the exponent depending on t
sign of the order±1 of the tensor operator̂T2,±1. As a con-
sequence of this, an antiphase term (T̂

(i j )
2,1− T̂

(i j )
2,−1) emerges from

the original two-spin correlation (T̂
(i j )
2,1+ T̂

(i j )
2,−1). The application

of a second pulse, whose phase is identical to that of the

pulse, only converts the original term (T̂
(i j )
2,1+ T̂

(i j )
2,−1), modulated

by cos(ω(i j )
CSτ ), into a DQC of the form (̂T

(i j )
2,2 − T̂

(i j )
2,−2). To

convert the antiphase term (T̂
(i j )
2,1 − T̂

(i j )
2,−1), modulated by

sin(ω(i j )
CSτ ), the phase of the second pulse has to be shifted bπ

2
with respect to the first.

During reconversion, the signal due to the DQC is modula
again by the same phase factors as during excitation. Finally
a spin pair with a frequency offsetω(i j )

CS , the DQ signal intensity
arising from the pulse sequence (x − x̄)exc(y − ȳ)rec is given
by

I (i j )
DQ ∝ cos2

(
ω

(i j )
CSτ

) · sin
(
Ä

(i j )
D (0, τ )

) · sin
(
Ä

(i j )
D (τ, 2τ )

)
. [93]

In Fig. 16a, the DQ intensity is plotted versus the freque
offset for the case calculated above (Eq. [93]) and for a s
pair with symmetrical offsetω(i )

CS = −ω( j )
CS. In the latter case

the simple cos2(ω(i j )
CSτ ) dependence is still approximately val

for small offsets of the orderω(i j )
CSτexc/2π < 0.1. For an offset

range ofω(i j )
CSτexc/2π < 0.2, the experimental results obtaine

using the proton pairs of tribromoacetic acid agree with the s
ple theoretical approach (see Fig. 16c). (The experiments w
performed under MAS at 20 kHz, applying an uncompensa
back-to-back pulse sequence of the form (x–x̄ y–ȳ)2 for the du-
ration of two rotor periods.)

Although in typical proton systems the chemical shift effe
are relatively small compared to the dipolar interaction, an e
tation bandwidth of1ωCSτexc/2π ¿ 1 does not suffice in prac
tice. Hence, a scheme providing at least partial offset comp

sation during DQ excitation is required. In order to derive such
scheme, first consider the effect of the pulse-sequence segm
Q COHERENCES 179
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FIG. 16. Calculated (thin lines) and experimental (thick lines) DQ e
citation efficiencies for a spin pair with frequency offsetω(i j )

CS. “One-sided”
means that both spins have the same offset, while “symmetrical” den
ω

(i j )
CS = −ω

(i j )
CS. Calculations (thin lines): (a) uncompensated excitation,

(b) offset-compensated excitation. For comparison, experiments on tr
moacetic acid (thick lines): (c) uncompensated excitation applying (x–x̄ y–ȳ)2,
and (d) offset-compensated excitation applying (x–x̄ y–ȳx̄–xȳ–y), in both cases
under MAS at 20 kHz, which corresponds toτexc= 100µs.

(90◦x–τ–90◦±x) and (90◦y–τ–90◦±y). The effective Hamiltonian o
such a segment is calculated by transforming the Hamilton
of Eq. [90] into the toggling frame (see also Eq. [78]). In t
following notation, the propagatorL̂φ reflects the action of a 90◦

pulse of phaseφ, whereφ = n · π2 , with n = 0, 1, 2, 3 corre-
sponding to the orientations of the RF field alongx, y,−x,−y,
respectively, in the rotating frame:

ρ̂(τ ) = L̂excρ̂(0)L̂
+
exc= L̂φ′ L̂ D+CSL̂φρ̂(0)L̂

+
φ L̂
+
D+CSL̂

+
φ′ . [94]

At this point, two cases have to be distinguished: Firs
segment consisting of two pulses with opposite phasesφ and
φ′ = φ + π , such that̂Lφ′ = L̂

+
φ , and hence

ρ̂(τ ) = L̂
+
φ L̂ D+CSL̂φρ̂(0)L̂

+
φ L̂
+
D+CSL̂φ. [95]

The excitation Hamiltonian of the propagator̂Lexc=
ˆ
a

ents
exp(−i Hexcτ ) is then simply obtained from a coordinate trans-
formation L̂

+
φ · · · L̂φ of the original excitation Hamiltonian
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Ĥ
(i j )

(t) (Eq. [90], see also Eq. [78]):

Ĥexc= exp

(
−i
π

2
Î φ

)
· 1

τ

∫ τ

0
Ĥ

(i j )
(t) dt · exp

(
i
π

2
Î φ

)
= ω(i j )

CS Î φ− π
2
+ ÄD(0, τ )

τ

·
(
−1

2
T̂2,0−

√
3

8
(T̂2,2+ T̂2,−2) exp(2iφ)

)
. [96]

Second, in the case of a two-pulse segment consisting
two pulses of identical phaseφ′ =φ, the calculation requires
the propagation in Eq. [93] to be extended several times
L̂φ L̂+φ = 1̂:

ρ̂(τ ) =
L̂exc︷ ︸︸ ︷

L̂φ L̂φ L̂
+
φ L̂D+CSL̂φ L̂

+
φ L̂
+
φ

· L̂φ L̂φρ̂(0)L̂
+
φ L̂
+
φ

· L̂φ L̂φ L̂
+
φ L̂
+
D+CSL̂φ L̂

+
φ L̂
+
φ︸ ︷︷ ︸

L̂
+
exc

. [97]

In comparison to Eq. [95], both the excitation propagatorL̂exc

and the initial state ˆρ(0) are now subject to an additional prop
agation L̂φ L̂φ · · · L̂+φ L̂

+
φ = exp(−iπ Î φ) · · ·exp(iπ Î φ). With

respect to ˆρ(0) and to the chemical shift term in the excit
tion Hamiltonian, this gives rise to a sign inversion, while t
termsT̂2,0 and (T̂2,2+ T̂2,−2) remain unaffected. The excitatio
Hamiltonians of two-pulse segments of the form (90◦

x–τ–90◦x)
or (90◦y–τ–90◦y) are finally given by

Ĥexc= −ω(i j )
CS Î φ− π

2
+ ÄD(0, τ )

τ

·
(
−1

2
T̂2,0−

√
3

8
(T̂2,2+ T̂2,−2) exp(2iφ)

)
. [98]

Comparing the excitation Hamiltonians in Eqs. [95] and [9
it is clear that inverting the phase of the second pulse in two-p
segments of the form (90◦q–τ–90◦±q) results in a sign inversion
of the chemical shift term. By combining two such segments
is possible to compensate for chemical shift or resonance
set effects, although the above discussion only applies to s
conditions.

Under MAS conditions, as pointed out above, a synchron
tion obeyingτ = τR/2 simplifies the algebra considerably, an
a pulse-phase shift ofπ2 between two consecutive segments co
serves the term (̂T2,2+ T̂2,−2) and hence provides dipolar recou
pling for DQ excitation, while the dipolar term̂T2,0 vanishes. Re-

peating this recoupling sequence (x–x̄ y–ȳ) with invertedpulse
phases, i.e., (x–x̄ y–ȳx̄–xȳ–y), provides offset compensation on
D SPIESS
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a time scale of 2τR, which is, in fact, the minimum time required
for the combination of dipolar recoupling and zeroth-order off
compensation.

Being an averaging process, the compensation does not
cus offset-induced magnetization dephasing which occurs o
time scalet < τR. In Fig. 16b, although an offset-compensat
pulse sequence (x–x̄ y–ȳx̄–xȳ–y) is applied forτexc= 2τR, the
loss of DQ signal intensity with increasing offset is still obviou
However, in comparison to Fig. 16a, the bandwidth of appro
imately uniform excitation efficiency provided by the offse
compensated pulse sequence is about a factor of 8 larger
that achievable by an uncompensated sequence. Addition
it should be noted that increasing the MAS frequency redu
the time scalet = 2τR required for compensation. Therefore
the excitation bandwidth of the pulse sequence can be impro
by spinning faster, while the dipolar recoupling performance
least under ideal conditions, remains unaffected.

Instead of varying the pulse phases, offset compensation
also be accomplished by inserting 180◦ pulses in the mid-
dle of the (90◦q–τR/2–90◦−q) segments (see also (107)), i.e.,
by the application of pulse-sequence segments of the f
(90◦q–τR/4–180◦q′′–τR/4–90◦q′ ). In this way, the time scale re
quired for offset compensation is reduced from 2τR to 1

2τR,
and hence the excitation bandwidth improves. However,
improvement is gained at the expense of an additional 1◦

pulse. In particular on the time scale of fast MAS, the ov
all duration of RF irradiation becomes significant and puls
cannot be considered negligibly short as compared to the r
period. Therefore, the reduction in the performance of a pulse
quence, which has initially been designed assuming hard pu
due to such interference effects is discussed in the follow
section.

The experiments confirm, in principle, the increased e
citation bandwidth for offset-compensated pulse sequen
(Fig. 16d, experiment with (x–x̄ y–ȳx̄–xȳ–y) under MAS at
20 kHz), although the experimental offset dependence is
considerably stronger and less symmetric than theoretically
dicted. These deviations are mainly due to the CSA of the prot
in the tribromoacetic acid sample. Performing the same exp
iment, but with additional 180◦ pulses instead of pulse-phas
variations, the excitation bandwidth can indeed be increas
but the overall excitation efficiency becomes less.

3.2.8. Finite Pulse-Length Effects

In addition to features inherent to the sample, e.g., chem
shifts, the DQ excitation scheme must also take into acco
experimental and technical imperfections. Concerning1H spec-
troscopy under fast MAS, an important technical limitation
the available RF field strength. Although theδ-pulse approach is
an essential and still very reasonable starting point for analyt
considerations, there are noteworthy effects due to experim

1
tal pulse lengths. However, in the context ofH NMR experi-
ments, we are not concerned with problems arising from internal
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interactions exceeding the RF field strength, but rather with p
lems arising from RF pulse durations interfering with the sh
time scale of fast MAS. In typical1H MAS experiments, the 90◦

pulse length is between 1.5 and 3µs. Considering, for example
a (q–q′) segment of a DQ excitation pulse sequence under M
at 35 kHz, this means that, with both pulses covering about 2
40% of the excitation time, the duration of RF application can
longer be simply neglected. In addition to this, in particular
fast MAS systems using coils of 2.5 mm inner diameter, the
field applied to the whole sample is not perfectly homogene
and, hence, the effective flip angle of the pulses is distribu
over a certain range.

A pulse of phaseφ applied during a timetp acts on a state o
longitudinal magnetization as

ρ̂(tp) = exp(−iω1tp Î φ) Î z exp(iω1tp Î φ)

= Î φ− π
2

sin(ω1tp)+ Î z cos(ω1tp), [99]

where, as stated above, the product of the RF field stren
ω1 = γI B1, and the pulse length,tp, determines the flip angle
β, of the pulse. As a first approximation, the weight of the ini
state Î z and the final statêI φ−π/2 during the pulse can be ca
culated by integrating the phase factors sin(ω1tp) and cos(ω1tp)
over the interval [0, tp]. For a flip angle ofβ = ω1tp = π

2 , the
average state of the system during RF application is theref
superposition of̂I z andÎ φ−π/2 with equal weight. This superpo
sition Î φ−π/2 + Î z affects, in principle, both the chemical sh
and the dipolar term of the excitation Hamiltonian (see Eqs.
and [97]). From an experimental point of view, however, the
fect on the latter is more important, because the dipolar ter
responsible for the generation of DQCs. Since this term d
not act on longitudinal magnetization, the excitation efficie
decreases when the pulse lengths increase. In contrast t
loss in efficiency, the pulse-length effect on the chemical s
term turns out to be rather advantageous, because any con
tion of longitudinal magnetization reduces the evolution du
frequency offsets. If, for example, 30% of the excitation time
covered by RF pulses, a reduction of about 15% of the off
induced dephasing can be estimated using this simple appr

In addition, finite pulse-lengths effects not only cause a
crease in the DQ signal intensity, but also affect the phases o
signals observed in the spectrum. The origin of such phase d
tions is obvious from the discussion of the phaseÄ

(i j )
D (0, τ ) (see

Section 3.2.4), which arises from the integration of the ro
modulated spatial part over the excitation interval [0, τ ] (see
Eq. [82]). If the conditionτ = τR/2 which ensures the simplifi
cation of the orientational dependence to a mere sign change
Section 3.2.5 and Eq. [84]) is not fulfilled, the phase behavio
the signals in the spectrum is complicated such that the obs
tion of purely absorptive resonance lines is no longer poss
Since finite pulse lengths give rise to such timing problem

the pulse sequence, it is clear that they finally lead to ph
distortions.
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FIG. 17. (a) Calculated spin-pair DQ excitation efficiencies for two ex
perimental imperfections: pulse lengthstp> 0 (solid line) and pulse flip-angle
deviations1β from the ideal value ofβ = 90◦ (dotted line). (b) Comparison
of calculated and experimental data, obtained using tribromoacetic acid
flip-angle misadjustments.

Moreover, the DQ excitation efficiency also decreases w
increasing deviations from the ideal flip angle of 90◦. The lat-
ter imperfection typically arises from experimental misadju
ments andB1 inhomogeneities. Its effect on the DQ excitatio
efficiency, i.e., unwanted creation of SQCs, is obvious fro
Eqs. [75] and [76]. Figure 17 shows the loss of DQ signal whi
is caused either by the pulses being of finite lengthtp during the
excitation timeτexc or by the flip angle deviating from its idea
valueβ = 90◦ by 1β

β
. It should be noted that the effects of puls

lengths oftp < 0.1τexc and flip-angle deviations of|1β| < 10◦

on the DQ signal intensity can usually be safely neglected.

3.3. Excitation of Higher-Order Coherences

Double-quantum coherences play the major role in the inv
tigation of dipolar-coupled multispin systems, because they e
body the fundamental pair character of the dipolar interacti
They are the spectroscopically accessible equivalent of two-s
correlations, which predominate under fast MAS conditions
the network of dipolar couplings. Although, in the context of1H
spectra under fast MAS, dipolar correlations of more than t
spins are usually unwanted, since they give rise to line broad
ing and, hence, to a loss of spectral resolution, we will discu
the excitation schemes and the spectra observed for such hig
order coherences in this section for reasons of completeness
because there are special situations and certain problems w
such coherences provide unique and valuable information.

3.3.1. Higher Spin Correlations

Considering the spin correlations emerging from a state
transverse magnetization through the action of dipolar c
plings, as is shown in Eq. [68], correlations of more than tw
spins are encountered in the second term of the series ex
sion which describes the evolution of a multispin system. T
terms correlating three spins are weighted by the squared p
aseuct of time t and dipolar coupling strength, with the coupling
strengthD(i j ) being hidden as a scaling part in the coefficients.
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Thet2-term in Eq. [68] takes the form

N∑
i=1

b(i ) Î
(i )
x + i

N∑
i< j

k 6=i, j

c(i jk )
(
T̂

(ik)
2,1 − T̂

(ik)
2,−1

) · Î ( j )
z

+ i
N∑

i< j
k 6=i, j

d(i jk ) Î
(i )
x Î

( j )
z Î

(k)
z

+ i
N∑

i< j
k 6=i, j

d(i jk )
(
Î

(i )
+ Î

(k)
− − Î

(i )
− Î

(k)
+
) · Î ( j )

y , [100]

which can be understood as follows: The first term∝ Î
(i )
x arises

from the oscillation of a coupled spinpair (i j ) between the state
( Î

(i )
x + Î

( j )
x ) and (T̂

(i j )
2,1 − T̂

(i j )
2,−1), as is described by Eq. [67

Hence, this term results from the partial evolution of a two-s
correlation back to a single-spin state. In contrast to this, al
other terms in Eq. [100] correlate three spins (i jk ) in three-spin
single-quantum coherences, where the products of the three
operatorsÎ

(i, j,k)
q differ with respect to their resulting magnet

quantum number by1M = ±1. Such three-spin terms ca
be written in the form of two different combinations of ladd
operatorsÎ

(i, j,k)
± and longitudinal componentŝI

(i, j,k)
z :

Î
(i )
+ Î

( j )
z Î

(k)
z ↔ Î

(i )
− Î

( j )
z Î

(k)
z [101]

and

Î
(i )
+ Î

( j )
+ Î

(k)
− ↔ Î

(i )
− Î

( j )
− Î

(k)
+ . [102]

In Eq. [100], the terms (̂T
(ik)
2,1 − T̂

(ik)
2,−1) · Î ( j )

z and Î
(i )
x Î

( j )
z Î

(k)
z

correspond to the former case, where only one of the three s

inverts its polarization within the coherence. The term (Î
(i )
+ Î

(k)
− −

Î
(i )
− Î

(k)
+ ) · Î ( j )

y corresponds to the latter case, where the inver
of polarization of one spin is combined with a flip-flop behav
of the other two spins. The indicesi , j , andk are chosen such tha
a third spink interacts with the two-spin correlation between
spinsi and j , which has been generated before. The presen
the termÎ

(i )
x Î

( j )
z Î

(k)
z is due to this special symmetric assignme

A RF pulse can convert these three-spin correlations
triple-quantum coherences (TQCs) (31). Usually, this problem
cannot be handled easily using analytical formulae, becaus

three pair couplingŝH
(i j )
D , Ĥ

(ik)
D , andĤ

( jk)
D , acting between the

three involved spins, are of different strength due to differen
ternuclear distances or different orientations of the internuc
vectors relative to the static magnetic field. The spin partsT̂

(i j )
2,0 ,

ˆ (ik) ˆ ( jk)

T2,0 , andT2,0 of the Hamiltonians are hence scaled by differe

spatial partsÄ(i j )
D ,Ä(ik)

D , andÄ( jk)
D . Consequently, the spatial an
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spin parts, except for one special case discussed below, ca
be completely separated, and the three pair-related tensor
ators cannot be merged to an effective operator of a “resulti
spin I = 3

2. Generally speaking, an arbitrary three-spin syst
cannot be represented by tensor operatorsT̂3,m of rank 3. The
same problem, i.e., the inequivalence of the spatial parts, oc
also for all higher spin correlations in dipolar-coupled multisp
systems.

3.3.2. Methyl–Spin-32 Analogy

A methyl group, rotating fast about its threefold symme
axis, represents the only frequently encountered1H spin sys-
tem, whose particular symmetry properties make all inter
proton–proton couplings equivalent, such that the three dist

spins Î
(i ) = 1

2 can formally be replaced by an effective sp

Î = ∑i Î
(i )

(see Eq. [103]) (37, 38). The fast uniaxial rotation
reduces the three dipolar coupling tensors to a single axi
symmetric tensor, whose effective dipolar coupling strength
reduced by a factor of12, because for fast rotations the origin
coupling strength is scaled by a factor of1

2(3 cos2 θ − 1), with
θ denoting the angle between the rotation axis and the inte
clear vector, i.e.,θ = 90◦ for a methyl group (1, 100). Therefore,
the intramethyl dipolar couplings can be simplified as follo
(37),

Ĥ D =
3∑

i< j

Ĥ
(i j )
D =

3∑
i< j

Ä
(i j )
D T̂

(i j )
2,0 = ÄD

3∑
i< j

T̂
(i j )
2,0 ,

since the spatial parts are equivalent, i.e.,Ä
(i j )
D = ÄD for all i, j .

From Eq. [24], it follows that

Ĥ D = ÄD√
6

3∑
i< j

(
2Î

(i )
z Î

( j )
z − Î

(i )
x Î

( j )
x − Î

(i )
y Î

( j )
y

)
= ÄD√

6
· 1

2

(
2

3∑
i=1

Î
(i )
z ·

3∑
i=1

Î
(i )
z −

3∑
i=1

Î
(i )
x

·
3∑

i=1

Î
(i )
x −

3∑
i=1

Î
(i )
y ·

3∑
i=1

Î
(i )
y

)
, [103]

since Î
(i )
q Î

(i )
q = 1

4 due to the normalization of spin-1
2 operators,

which means that

3∑
i< j

Î
(i )
q Î

( j )
q =

1

2

3∑
i=1

Î
(i )
q ·

3∑
i=1

Î
(i )
q −

3

4
, [104]

whereq = x, y, z. In theN-spin system, the effective spin op
ˆ ˆ ∑N ˆ(i )
nt

d

eratorI is defined by the sumI = i=1 I and, hence, the sum

of the componentŝI
(i )
q in Eq. [103] can be considered effective
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short-excitation-time limit, the DQ signal of a methyl group is
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spin operators as well. Consequently, the tensor operatorsT̂
(i j )
2,0 ,

T̂
(ik)
2,0 , andT̂

( jk)
2,0 of the three spin pairs can be replaced by a sin

spin-32 operatorT̂2,0:

Ĥ D = ÄD√
6
· 1

2
(2Î z Î z− Î x Î x − Î y Î y) = 1

2
·ÄD T̂2,0. [105]

It is important to note that replacing the sum of single-s
operators by an effective-spin operator introduces an additi
factor of 1

2, which takes into account the double weight of t
mixed productsÎ

(i )
q Î

( j )
q with i 6= j in the product of the sum∑N

i=1 Î
(i )
q ·

∑N
i=1 Î

(i )
q . The dipolar Hamiltonian in Eq. [105] is

formally analogous to that of a first-order quadrupolar int
action of a spinI > 1

2 nucleus (see discussion followin
Eq. [18]). This means that the dipolar1H system of a methy
group is formally identical to a quadrupolar nucleus with s
I = 3

2. This analogy strongly suggests the use of quadrup
systems as models for such a small and highly symmetric1H
system. It should be noted, however, that similarly symme
systems with more than three spins and equivalent coupling
not exist. The only spin system with more than three spins, wh
fulfills the symmetry requirements, is represented by four sp
being placed at the vertices of a tetrahedron, e.g., the proto
methane, CH4. In this nonplanar case, however, the symmetri
tion of the coupling tensors with respect to their orientations
ative to the static magnetic field requires a fastisotropicmotion,
which inevitably removes all dipolar interactions.

3.3.3. Double- and Triple-Quantum Coherences
in Methyl Groups

The application of a pulse sequence 90◦
y–τ–90◦−y,−x to the

three dipolar-coupled protons of a fast rotating methyl gro
creates the following states (16):

ρ̂(0)∝ Î z =
3∑

i=1

Î
(i )
z = T̂1,0

90◦y→ Î x =
3∑

i=1

Î
(i )
x =

1√
2

(T̂1,−1− T̂1,1)

∫ τ

0

Ĥ D (t) dt−−−→


− 1

5
√

2
(T̂1,1− T̂1,−1)[3 cos(ÄD(0, τ ))+ 2]

+ i
2(T̂2,1+ T̂2,−1) sin(ÄD(0, τ ))

− 2√
30

(T̂3,1− T̂3,−1)[cos(ÄD(0, τ ))− 1]


either

90◦−y−→


− 1

5
√

2
T̂1,0[3 cos(ÄD(0, τ ))+ 2]+ i

2(T̂2,2

− T̂2,−2) sin(ÄD(0, τ ))− 1
2
√

15
[
√

3T̂3,0



+√5(T̂3,2+ T̂3,−2)][cos(ÄD(0, τ ))−1]
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90◦−x−→



− 1
5
√

2
(T̂1,1− T̂1,−1)[3 cos(ÄD(0, τ ))+ 2]

− i
2(T̂2,1+ T̂2,−1) sin(ÄD(0, τ ))

+ 1
2
√

2

[
1√
15

(T̂3,1− T̂3,−1)+ (T̂3,3− T̂3,−3)
]

× [cos(ÄD(0, τ ))− 1]

. [106]

After the first pulse, the dipolar interaction̂H D correlates one,
two, and three spins generating one-, two-, and three-spin SQ
as can be seen from the ranksl = 1, 2, 3 and the ordersm= ±1
of the tensor operatorŝT l ,m. The contributions of the single
spin states and two- and three-spin correlations are weighte
[3 cos(ÄD(0, τ ))+ 2], sin(ÄD(0, τ )), and [cos(ÄD(0, τ ))− 1],
respectively. In the limit of short excitation timesτ , the leading
terms of the series expansions are given by [5−3Ä2

D(0, τ )± · · ·],
[ÄD(0, τ )± · · ·], and [−Ä2

D(0, τ )± · · ·], respectively. Hence
the contribution of the single-spin states decreases w
Ä2

D(0, τ ), while the contributions of the two- and three-sp
correlations increase linearly and quadratically with resp
to ÄD(0, τ ), respectively. Since this approximation assum
ÄD(0, τ )¿ 1, correlations of three spins, being proportional
Ä2

D(0, τ ), are created to a much smaller extent than those of
spins, which depend only linearly onÄD(0, τ ).

A further pulse with the same or inverted phase, 90◦
y–τ–90◦±y

in Eq. [106], creates even-order coherences only, i.e., longit
nal single-spin states (T̂1,0) and three-spin ZQCs (T̂3,0) as well
as two- and three-spin DQCs (T̂2,±2 andT̂3,±2). Therefore, the
DQCs of a methyl group consist of two- and three-spin co
tributions with different weights, corresponding to the differe
phase factorsi2 sin(ÄD(0, τ )) and− 1

2
√

3
[cos(ÄD(0, τ ))−1], re-

spectively. Recall that the experimental selection of coheren
by pulse phases is sensitive only to the coherence order
to the number of correlated spins. In this context, howeve
should be noted that, by application of 54.7◦ pulses instead of
90◦ pulses to a state consisting ofT̂2,±1 andT̂3,±1 contributions,
the latter, i.e., the rank 3 terms, are suppressed, while the
2 terms are preserved, though reduced by a factor of 0.8 (64).
The DQ signal intensity of two- and three-spin contribution
excited and reconverted by a pulse sequence (x–x̄)exc(y–ȳ)rec, is
finally given by

I CH3
DQ ∝

two-spin︷ ︸︸ ︷[
sin

(
ÄD

(
0,
τR

2

))]2

−

three-spin︷ ︸︸ ︷
1

4

[
cos

(
ÄD

(
0,
τR

2

))
− 1

]2

≈Ä2
D

(
0,
τR

2

)
+ · · · − 1

4
Ä4

D

(
0,
τR

2

)
− · · · . [107]

Note that two- and three-spin terms have different signs. In
dominated by two-spin DQCs, since the three-spin DQCs are
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FIG. 18. Calculated DQ and TQ buildup curves for the protons of a met
group: (a) Two- and three-spin contributions to the DQ signal (b) compariso
DQ and TQ signal. From two- and three-spin correlations, coherences are cr
following an initial intensity increase of the formI ∝ Ä2

Dτ
2 (two-spin DQC)

andI ∝ Ä4
Dτ

4 (three-spin DQC and TQC), respectively. The intensities of thr
spin DQC and TQC differ by a factor of14 : 3

8 = 2
3 (see Eqs. [107] and [108].

discriminated in a twofold manner: first by the coefficient1
4

resulting from the tensor algebra, and second, recalling the
sumptionÄD(0, τ )¿ 1 for the series expansion, by the fact th
their leading term isÄ4

Dτ
4 compared toÄ2

Dτ
2 for the two-spin

terms. In Fig. 18a, the DQ buildup curves are displayed s
arately for the two- and three-spin DQCs. As is expected,
two-spin curve is identical to that of a spin pair (see Fig. 1

During the initial increase, the three-spin contributions are
weak that they do not noticeably perturb the dominating sp
ND SPIESS

yl
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e-
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p-
the
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pair character of the methyl DQ signal. ForDτexc/2π > 0.5,
however, the three-spin coherences form, reducing the res
ing DQ signal intensity considerably (note the opposite sign
Eq. [107]).

In contrast to the DQC case, the excitation of TQCs requi
a phase shift of±π

2 between the two pulses, as is shown for th
sequence 90◦y–τ–90◦−x in Eq. [106]. In this case, only odd-orde

coherences are created. The TQC, i.e., the term (T̂3,3− T̂3,−3),
is weighted by [cos(ÄD(0, τ ))− 1] and, after the reconversion
the TQ signal intensity is given by

I CH3
T Q ∝

3

8
[cos(ÄD(0, τ ))− 1]2

≈ 3

8
·Ä4

D(0, τ )± · · ·

∝ 3

8
· D4τ 4. [108]

In comparison to the DQ signal intensityI CH3
DQ (displayed in

Fig. 18b), the TQ buildup is “delayed,” and the maximum in
tensity of I CH3

T Q is reached at about twice the excitation tim
This is due to the fact that the TQ signal intensity depends
the fourth-powerD4τ 4, as is also the case for three-spin DQC
with both three-spin DQCs and TQCs being created via thr
spin correlations.

3.3.4. Pulse Phases and Dipolar Recoupling
for TQ Excitation

In order to design a pulse sequence for reconverting TQ
more attention has to be paid to the choice of pulse phases
in the DQC case. The phase sensitivity of the spin part o
DQC, represented by tensor componentsT̂ l ,±2, to a phase shift
φ can be described by a factor of exp(2iφ), and usual pulse-
phase shifts ofφ = n · π2 , wheren = 0, 1, 2, . . . , merely give
rise to a multiplication by a factor of (−1)n, i.e., a sign inversion
of the state or the excitation Hamiltonian. In the same way,
sign of the integrated spatial partÄD(t1, t2) of the dipolar inter-
action is inverted when shifting the rotor phase from the inter
(t1 = 0, t2 = τR/2) to (t1 = τR/2, t2 = τR), as can be seen from
Eq. [85]. In the case of DQCs, therefore, both the spatial a
the spin part phase sensitivity only affect the sign of the state
longitudinal magnetization created after the reconversion,
the actual reconversion procedure is not impaired at all. T
indifference to sign inversion can be demonstrated by cons
ering, as an analogous case, the effect of pulses on state
transverse magnetization: A±y pulse always transforms a stat
ρ̂ ∝ ± Î x into longitudinal magnetization± Î z, with the signs
of the pulse phase and the state ˆρ merely determining the sign
of the resulting state, but not whether transverse magnetizatio
transformed to longitudinal magnetization or not. In contrast
this, a phase shift of the pulse or of the initial state ˆρ by±π

2 foils

so
in-
the effect of the pulse, because a pulse with phase±q does not act
on transverse magnetization of the same phase, i.e., on ˆρ ∝ ± Î q.
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forms the basis for the spectral identification of different MQCs
FAST MAS AND M

In the case of TQCs, we have to deal with such aπ
2 phase

shift, since the usual pulse-phase shifts byφ = n · π2 , where
n = 0, 1, 2, . . . , give rise to phase factors of the form exp(3iφ),
corresponding to a multiplication by a factor of (−i )n. Upon
shifting the phase byφ = n · π2 with odd-numberedn, the
pulse no longer has an effect on the TQCs. Conseque
a TQC, after being generated out of a three-spin correla
by a pulse of phase±q, can be converted back to a thre
spin correlation only by a pulse of the same or sign-inver
phase.

Therefore, in order to excite and reconvert TQCs, the tw
pulse scheme needs to be of the form (90◦

x–τ–90◦y) or (90◦y–
τ–90◦x), and it has to be combined to (90◦x–τ–90◦y)exc(90◦y–
τ–90◦x)rec and (90◦y–τ–90◦x)exc(90◦x–τ–90◦y)rec, respectively, with
the signs of the pulse phases still being optional. This two-pu
excitation scheme is limited to short excitation times, i.e., u
der MAS toτ ≤ τR/2, as has already been discussed in Sec
3.2.4. The signal intensity of TQCs, however, grows more slo
with time than that of DQCs in the same system (see Eq. [10
and, hence, the extension of the excitation scheme to excita
timesτexc > τR/2 by means of dipolar recoupling is essent
for TQ spectroscopy.

To achieve dipolar recoupling, the time reversal induced
MAS has to be compensated by a counterrotation in spin sp
as is provided by proper coordinate transformationsL̂φ · · · L̂+φ
of the dipolar HamiltonianĤ D (see Eq. [88]). However, the
two-pulse segments of the TQ excitation scheme canno
straightforwardly considered a simple coordinate transform
tion for Ĥ D, because they take the form̂Lφ+ π

2
Ĥ D L̂φ . Further-

more, the effective TQ excitation Hamiltonian needs to cont
tensor operatorŝT3,±3 of third rank and third order, which can
not be obtained from a simple coordinate transformation o
second-rank tensor̂H D ∝ T̂2,0.

In fact, a pulse sequence applicable for long-time TQ ex
tation makes use of the same dipolar recoupling scheme
for DQ excitation, but transforms the initial state from longit
dinal into transverse magnetization beforehand (98, 30). Using
propagator notation, this TQ excitation scheme can be deri
starting from the two-pulse segment (y–x), as follows:

ρ̂T Q

(
τR

2

)
∝ L̂x L̂ D

(
0,
τR

2

)
L̂ yρ̂(0) · · ·

= L̂x L̂ D

(
0,
τR

2

)
L̂
+
x︸ ︷︷ ︸

two-pulse segmentx–x̄

L̂x L̂ yρ̂(0) · · · [109]

The first propagator̂L y acting on the equilibrium magne
tization ρ̂(0) produces transverse magnetization of the fo
ρ̂(0) ∝ Î z → Î x, on which the following 90◦x pulse L̂x has
no effect. Hence, it can be dropped in the experiment. T
product L̂

+
L̂ = Î has only formally been inserted to crea
x x

a two-pulse segmentx–x̄ which can be interpreted as the famil
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iar coordinate transformation for the dipolar HamiltonianĤ D,
i.e., L̂x L̂ D(0, τR/2)L̂

+
x = exp(−i L̂x Ĥ D L̂

+
x ·(τR/2). In this way,

longer TQ excitation times are accomplished by the same d
lar recoupling procedure as is used for DQ excitation, i.e.,
alternating sequence of two-pulse segmentsx–x̄ and y–ȳ. Re-
coupling pulse sequences for TQ excitation are hence of
form y[x–x̄ y–ȳ]n, where the signs of the pulse phases are ag
optional and usable for the compensation of frequency offs
or pulse imperfections.

3.4. Rotor-Synchronized MQ Spectra

In the previous sections, we have focused on the excita
of MQCs among dipolar-coupled spins. In this section, we n
turn to the evolution of these coherences under MAS and
der the internal interactions present in the spin system. It
be shown that the isotropic chemical shift combined with
line narrowing provided by fast MAS allows DQCs and TQC
of different spin pairs or triplets to be resolved in the spec
To observe such MQ evolutions experimentally, a so-called M
evolution period is inserted between excitation and reconver
(see Fig. 13a). In this way, the experiment correlates the e
lution of the selected MQCs during the first spectral dimens
(t1) with the SQ signal detected during the final period (t2).

In the following, we will discuss the features observed
and the information obtainable from such two-dimensional M
spectra. In this section, however, only the line-narrowing
fect of MAS will be considered, disregarding rotor modulatio
leading to MAS sideband patterns, which will be discussed
Section 3.5. Experimentally, such rotor modulations can be
ily avoided by detecting the signal data points in both time
mensionst1 andt2 using increments of full rotor periodsτR. The
resulting two-dimensional spectral width is henceωR · ωR, and
the observed spectrum, which will henceforth be referred to
rotor-synchronized spectrum, formally corresponds to the in
gration over the whole MAS sideband pattern. In this contex
is noteworthy that the application of recoupling pulse sequen
of theCn type (67, 57, 89) for the excitation and reconversio
of DQCs allowst1 to be incremented in steps ofτR/n and rotor-
synchronized MQ spectra to be obtained with a spectral w
of n · ωR in ω1 (58).

3.4.1. MQCs under Internal Interactions

In a1H multispin system, the isotropic chemical shift and t
dipolar interaction are the most important internal interactio
experienced by MQCs. The evolution of a DQC between t
spinsi and j under the chemical shift results in a modulatio
of the form exp(i (ω(i )

CS+ ω( j )
CS)t) (see Eq. [74]). Higher-orde

coherences are modulated in an analogous manner, obeyin
simple rule that the resonance frequency of a MQC is the s
of the resonance frequencies of all involved spins. This prop
-in MQ spectroscopy.
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The effect of the dipolar interaction on MQCs is a little mo
complex, because dipolar couplings can either be an interna
or an external perturbation of the MQC. Hence, considerin
DQC in a three-spin system, two types of dipolar couplings h
to be distinguished: first the mediating pair coupling between
spinsi and j forming the coherence, and second the couplin
the third spink. Using commutator notation, this means

[(
T̂

(i j )
2,2 ± T̂

(i j )
2,−2

)
, Ĥ

(ik)
D

] ∝ [(T̂ (i j )
2,2 ± T̂

(i j )
2,−2

)
, T̂

(ik)
2,0

]
∝
{

0 for j = k(
T̂

(i j )
2,2 ∓ T̂

(i j )
2,−2

)
Î

(k)
z − Î

(i )
z

(
T̂

( jk)
2,2 ∓ T̂

( jk)
2,−2

)
for j 6= k

.

[110]

In the first case (j = k), it is clear that a DQC does n
evolve under a dipolar coupling which is part of the coh
ence, since in a DQC the spin pair (i j ) and the mediating cou
pling D(i j ) behave as a single entity. However, any coup
to a spin outside the coherence gives rise to an evolutio
the DQC duringt1 and, in this way, usually to a loss of si
nal, because the reconversion only reverses the effects of
lar couplings, which have occurred during the excitation
riod τexc, but not any dipolar evolution thereafter. Coupling
spink to the two-spin coherence (i j ) produces a three-spin DQ
∝ [(T̂

(i j )
2,2 ∓ T̂

(i j )
2,−2) Î

(k)
z − Î

(i )
z (T̂

( jk)
2,2 ∓ T̂

( jk)
2,−2)], as can be seen from

the commutator in Eq. [110]. This kind of evolution, by whi
higher spin correlations are generated without changing th
herence order, is characteristic for a dipolar-coupled multi
system, as is well known from the evolution of transverse m
netization (see Eqs. [68] and [100]).

Fast MAS reduces the dipolar interaction to an effective
Ĥ D,eff which, using Eq. [48], can be written as

Ĥ D,eff =
2∑

m=−2
m6=0

[ Ĥ−m, Ĥm]

2mωR
+

2∑
m,p=−2
m,p6=0

[[ Ĥ−m, Ĥm], Ĥ p]

3mpω2
R

+ · · · ,

[111]

with the Fourier componentŝHm including the sum over a
pairs (i j ): Ĥm=

∑
i< j Ĥ

(i j )
m . The commutator [̂H−m, Ĥm] in

the leading term hence corresponds to a three-spin intera
(i jk ), since the componentŝHm commute for a single pair (i j )
as well as for two pairs (i j ) and (kl) consisting of four differ-
ent spins: [Ĥ

(i j )
−m, Ĥ

(i j )
m ] = [ Ĥ

(i j )
−m, Ĥ

(kl)
m ] = 0. Furthermore, this

residual part of the interaction is scaled by a factor ofω−1
R . In this

way, MAS reduces the evolution of DQCs under dipolar c
plings and narrows the resonance lines. This effect has alr
been discussed in detail in Section 2.6, the results of wh
though obtained from SQC considerations, can be directly

plied to DQCs, since they concern the dipolar Hamiltonian a
not the state on which the Hamiltonian acts. However, in contr
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to SQCs, every DQC is invariant with respect to its mediati
coupling, which therefore needs to be excluded when consi
ing the evolution of DQCs. This feature is of particular impo
tance for the mechanisms which generate MAS sideband
terns. It is also important to note that, in a dipolar-coupled spin1

2
system, MQCs rely on the presence of the mediating dipolar c
plings for their excitation, but not at all for their conservatio
Consequently, a DQC between the spinsi and j persists even if
the mediating couplinĝH

(i j )
D is averaged to zero by MAS.

Although, with increasing coherence order, the number
couplings which are part of, but not acting on, the coheren
increases as well, the signal decay usually does not become
and the linewidths are not reduced in the experimental spec
On the contrary, the linewidth in general is found to increa
with the coherence order. Empirically, in dense and stron
dipolar-coupled systems, the linewidths seem to be broade
almost proportionally to the coherence order. In Fig. 19, the1H
SQ, DQ, and TQ spectrum ofL-alanine under MAS at 35 kHz is
displayed (98). The experimentally observed linewidths of th
protonated amino group (NH+3 ) and of the methyl group (CH3)
are graphically compared with each other. The reason for t
at first sight, unexpected line broadening is that the sensiti
of MQCs to external perturbing couplings increases with t

FIG. 19. Experimental1H SQ, DQ, and TQ spectra ofL-alanine under MAS
at ωR/2π = 35 kHz. The resonance lines are assigned to the spins invo
in the respective coherence. The assignments in parentheses are based
knowledge of the two-dimensional spectra, depicted in Fig. 20 . In the inset
linewidths of the NH+3 and CH3 resonances are graphically compared to ea

nd
ast
other. It can be seen that, due to the increased sensitivity of MQCs to perturbing
interactions, the linewidths increase with the coherence order.
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coherence order (25, 38): A MQC of order p evolves under a
dipolar coupling to thepth power, as has been demonstrat
by Friedrichet al. for a first-order quadrupolar MQC which i
subject to heteronuclear dipolar couplings (37). Apart from this
order effect on the propagation, the elevated sensitivity of dip
MQCs is also due to the simple statistical fact that the higher
coherence order, the more spins are involved, providing m
“points of attack” for external perturbing couplings.

In addition to the sensitivity problem, the spectral resolut
achievable in MQ spectra suffers from the fact that the nu
ber of spin combinations forming a MQC and, consequen
the number of resonance lines also increases with the coher
order. For example, 2, 3, or 4 SQ resonances give rise to a m
imum number of 3, 6, or 10 DQ and 4, 10, or 18 TQ signa
respectively. In the case ofL-alanine, 31H SQ resonance lines
are observed (see Fig. 19: NH+3 (A), CH (B), and CH3 (C)).
Since all interproton distances are relatively small, correspo
ing to a dense network of dipolar couplings, NMR signals of
6 possible DQCs and 8 of 10 possible TQCs are detected,
though with different intensity. In the TQ spectrum, the sign
BBB andABC are missing because of the spatial separation
the involved nuclei. However, for a clear identification of all si
nals, the spectral resolution of the one-dimensional MQ spe
is usually not sufficient. Instead, the full assignment requires
spectra to be inspected in their full two-dimensional form.

3.4.2. The Two-Dimensional Form of MQ Spectra

In Fig. 20, rotor-synchronized DQ and TQ spectra are d
played in their typical two-dimensional form, correlating th
MQ signal on theω1 frequency axis (t1 dimension) with the SQ
signal detected duringt2. Theω1 axis is scaled by the order o
the observed MQ coherence, yielding a diagonal which is
bisecting line of the angle between the SQ and the scaled
axis. The sample used for these example spectra isL-alanine,
and the spectra were recorded applying MAS at 35 kHz and
citation times ofτexc= τR = 28.6µs andτexc= 2τR = 57.2µs
for DQCs and TQCs, respectively (98).

Considering first the DQ spectrum, it is clear that the tw
dimensional correlation spectrum consists of two types of s
nal patterns (see also the schematic representation in Fig. 2
DQC between two like spinsAA gives rise to a single peak ob
served at the position (2ωA, ωA) on the diagonal of the spectrum
(the notation (ω1, ω2) refers to theω1 (DQ) andω2 (SQ) frequen-
cies of the peak). A DQC between unlike spinsAB also generates
only one DQ signal along theω1 axis, but the signal is split into
two resonance lines atωA andωB along theω2 axis. Therefore,
a pair of peaks is observed in the DQ spectrum at the posit
(ωA+ωB, ωA) and (ωA+ωB, ωB), i.e., symmetrically on either
side of the diagonal. DQ signals of the former type (AA , A) are
henceforth referred to as “diagonal peaks,” while signal pa
(AB, A), (AB, B) of the latter type are termed “cross peaks.”
At first sight, the solid-state DQ MAS experiment seems
yield spectra which are very similar to those obtained by the I
Q COHERENCES 187
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FIG. 20. Two-dimensional rotor-synchronized1H DQ spectrum (a) and TQ
spectrum (b) ofL-alanine at a1H Larmor frequency of 500 MHz and under MAS
atωR/2π = 35 kHz, correlating the MQ signals with the SQ signals. Theω1

(MQ) axis is scaled by the coherence order such that the spectral widthsω1

are twice or three times as large as those inω2.

ADEQUATE experiment in solution- or liquid-state NMR, sinc
both DQ MAS and INADEQUATE correlate a DQ with a SQ d
mension. However, a noteworthy difference between DQ M
and INADEQUATE spectra is the absence of diagonal peak
the latter (31). This remarkable difference arises from the fa
that, in the solid state, the homonuclear DQCs are gener
using dipolar couplings, while the INADEQUATE approac
makes use ofJ-couplings.Isotropic J-couplings, however, do
not give rise to DQCs between indistinguishable nuclei, wher
in the solid-state DQ experiment the mediating dipolar inter
tions are inherentlyanisotropic, such that a coherence can b
generated even between “indistinguishable” spins.

In the TQ spectrum, the situation is complicated by the n

to
N-
to distinguish three types of signal patterns (38), as are depicted
in Fig. 21: In the simplest case, a TQC consists of three like
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spinsAAA , whose signal appears as a TQ diagonal peak a
position (3ωA, ωA) in the spectrum. If two like spins are involve
in a TQC (AAB ), the TQ signal splits into a pair of cross pea
at the positions (2ωA + ωB, ωA) and (2ωA + ωB, ωB). In rare
cases, a TQC may consist of three unlike spinsABC, whose TQ
signal splits into three peaks at (ωA+ωB+ωC, ωA), (ωA+ωB+
ωC, ωB), and (ωA + ωB + ωC, ωC). The latter situation is no
shown in Fig. 21. Note that TQ signals do not split symmetric
with respect to the diagonal.

For a MQ signal of unlike spins, the intensity distributi
over the cross peaks corresponds, in the ideal case, to the
ber of involved spins. Thus, the two DQ cross peaks of anAB
coherence are in principle of equal intensity, because both s
contribute to the coherence with equal weight. Therefore,
cross peaks are symmetric not only with respect to their posit

FIG. 21. Schematic representation of the typical patterns observed in
dimensional rotor-synchronized DQ (a) and TQ (b) spectra. The DQ cross p
are located symmetrically with respect to the diagonal, while the TQ diag

intersects the splitting of TQ cross peaks alongω2 at a ratio of 2 : 1 or 1 : 2,
respectively.
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relative to the diagonal, but also with respect to their intens
distribution. The same kind of symmetry—though only with r
spect to the intensity distribution, but not with respect to t
positions—is also observed for a TQC of three unlike spin
TQCs of theAAB type, however, should show an asymmetr
intensity ratio of 2 : 1 in favor of theA spins.

The experimentally observed intensity distributions of D
and TQ cross peaks may appear less symmetric than theoreti
expected. For example, while in the DQ spectrum in Fig. 20a
cross-peak intensities are distributed symmetrically througho
in the TQ spectrum in Fig. 20b theC peak of theAAC cross
peak is considerably weaker than expected. Intensity distorti
of this kind are in most cases due to experimental base
problems around strong peaks, such as theCCC diagonal peak
in Fig. 20b (97). These baseline problems are exacerbated
motional effects in the sample, for example, by the dynam
associated with long alkyl chains, since then, with increas
t1, a continuous loss of coherence, i.e., relaxation, takes pla
distributing the signal statistically along theω1 axis (so-called
t1 noise) (65). If an intense MQ signal suffers from such a kin
of relaxation, another weaker MQ signal may even be lost in
noise.

3.4.3. Semi-quantitative Information

The information obtainable from rotor-synchronized tw
dimensional MQ spectra is based on the intensities of the
served signals (96). For DQ spectra with short excitation times
the signal intensity,I (i j )

DQ, of a DQC between the spinsi and
j is proportional to the squared product of the underlyi
dipolar coupling strength,D(i j ), and the excitation time,τexc

(see Eq. [84]). In the spectrum, the DQ signals are resolved w
respect to the chemical shifts of the involved spins. Hence,
DQCs between spinsi and j forming a pair of the type, say,
AB contribute to the same pair of peaks at (ωA + ωB, ωA) and
(ωA + ωB, ωB) in the spectrum. Therefore, as a first approx
mation valid for short excitation times, the detected DQ sign
intensity I AB

DQ is given by the sum over all DQ intensitiesI (i j )
DQ

with (i j ) = AB:

I AB
DQ =

∑
i< j

(i j )=AB

I (i j )
DQ ∝

∑
i< j

(i j )=AB

(
D(i j )τexc

)2

∝ τ 2
exc ·

∑
i< j

(i j )=AB

1

r 6
i j

∝ τ 2
exc

r 6
ABeff

. [112]

The sum over all pair distancesri j suggests the definition of
an effective distancerABeff between spin pairs of the typeAB.
The contribution of each real distanceri j is weighted by the re-
ciprocal sixth power, thereby ensuring a rapid convergence
the sum for increasing distances, as can be demonstrated a

lows: Starting from a spini , the number of potentially coupled
spins j up to a maximum distanceri j is limited by the spherical
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volume V ∝ r 3
i j . Consequently, when extending the distan

range fromri j to ri j + dri j , the maximum statistical increase
the number of coupled pairs (i j ) is proportional todV ∝ r 2

i j dri j

which is, with respect to the distance, four orders of magnit
less than the DQ signal discrimination. Considering, e.g.,
DQCs between spin pairs of the same type, but with differ
internuclear distancesr andr ′ = 3

2r , the DQ signal of the more
weakly coupled pair contributes to the overall DQ signal by
amount of only 8%. In addition to the purely statistical arg
ment, the volume around a spin is, in general, not close-pa
with other spins due to the chemical structure of the molecu
Therefore, DQ signals are dominated by the nearest-neig
pairs.

Since the excitation timeτexc is fixed by the experiment, th
intensity ratioI AB

DQ : I CD
DQ of two DQ signals directly correspond

to the ratio (rABeff : rCDeff)−6 of the two effective internuclea
distances of pairs of the typesAB andCD, respectively. The
validity of this simple interpretation of the DQ signal intensiti
relies on the assumption that all pair couplingsD(i j ) fulfill the
short-time conditionD(i j )τexc/2π ¿ 1, which means—in othe
words—that during the periodτexconly two-spin correlations are
created. As soon as there are higher spin correlations presen
noticeable extent, the pair-related DQ signals start to decay
the intensities of different DQ signals can no longer be compa
to each other in this simple manner.

Turning to typical experimental conditions for rigid1H sys-
tems, the strongest dipolar proton–proton coupling is at ab
D(i j )= 2π · 20 kHz (i.e., a rigid CH2 group with an interpro-
ton distance ofri j = 0.18 nm). The short-excitation-time limit i
then given byτexc< 15µs, corresponding to a two-pulse excit
tion scheme 90◦q–τR/2–90◦q′ for MAS frequencies ofωR > 2π ·
30 kHz. For longer excitation times, the DQ signal of the m
strongly coupled protons usually decays relative to that of
more weakly coupled protons. Depending on the demand on
accuracy of the distances determined from the experiment
simple pair-related interpretation of DQ signal intensities is s
applicable for excitation times of up toτexc< 30µs, since a de-
viation of the DQ signal intensity by 10% leads to an error
only 1.5% in the distance determination and can, in addit
easily be corrected for. Assuming that the weakest observ
DQ signal should have an intensity of at least 1% of that
the strongest signal (which is often that of the CH2 groups),
the short-excitation-time approach withτexc< 30µs allows DQ
signals to be detected up to an effective interproton distanc
aboutreff < 0.4 nm. Therefore, the mere existence of a DQ s
nal of the typeAB contains the semi-quantitative informatio
that the respective nuclei HA and HB have an effective distanc
reff =

∑
r−6

i j of less than 0.4 nm.

3.4.4. Proton–Proton Distances from DQ Signal Intensities

In this section, we will proceed to a fully quantitative interpr

tation of the DQ signals in rotor-synchronized two-dimension
spectra and outline the experimental approaches to quantita
Q COHERENCES 189
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DQ spectroscopy. Relying on the spin-pair approximation,
relative intensities of DQ signals can be used to measure
effective distances between spectrally resolved spins in a q
titative manner, provided that one signal, arising from a dip
coupling of known strength, can serve as a reference intensi
the following we will distinguish betweeninternalandexternal
referencesignals. An internal standard requires the sampl
contain molecular units where, under MAS conditions, a pro
pair of known distance or a methyl group is dipolar decoup
from other protons to such an extent that the observed DQ s
arises only from this spin pair or intramethyl coherence, res
tively. In other words; the effective dipolar coupling underlyi
the DQ reference signal needs to consist of one pair coup
or one intramethyl coupling only. From an experimental po
of view, this requirement is usually fulfilled to a satisfactory e
tent, if perturbing dipolar interactions are weaker than1

3 of the
dominating coupling of interest or—in terms of distances—
the effective distance to perturbing protons is larger than a
3
2 of the considered pair distance. In some cases, it may
be possible to use a signal arising from a known effective c
pling instead of a pure spin pair or methyl signal. Neverthel
for unknown samples it is often hard to estimate whether th
are DQ signals which originate from molecular units fulfillin
the structural requirements and which therefore are suitab
internal standards.

As an alternative approach, the sample can be measure
gether with a compound, e.g., tribromoacetic acid, which c
tains an isolated proton pair and whose DQ signal can serv
an external intensity reference. Since this approach is base
the presence of an additional peak in the spectrum, care h
be taken to avoid overlapping with the sample signals. W
using tribromoacetic acid as a standard, the protons are p
hydrogen bonds and, hence, their resonance frequency is s
to 12.3 ppm, which is well outside of the typical1H frequency
range of 0. . .10 ppm. This marked low-field shift is achieved
the expense of a strong acidity of the compound, which usu
makes it impossible to mix the standard with the sample
hence requires them to be packed in separate parts of the
rotor.

Apart from the problem of DQ intensity calibration, the rela
ation of two-spin correlations during the excitation period ne
also to be considered. Although, for short excitation times,
DQ signal is built up according toI (i j )

DQ ∝ (D(i j )τexc)2, decay
processes are known to come into play before the DQ bui
curve reaches its oscillatory regime (see Fig. 14a). As has
discussed in Section 3.2.6, these decay processes are d
experimental imperfections and, far more importantly, due
perturbing dipolar interactions of the considered pair (i j ) with
surrounding spins. From the latter reason it is obvious tha
excitation time, after which such decays set in, represents
time scale on which three-spin contributions start to per
the two-spin approximation. The importance of such pertu

al
tive
tions is demonstrated by the fact that they are clearly observed
even for the spin-pair model compound tribromoacetic acid (see
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Fig. 14b). Since the extent of perturbing couplings strongly
pends on the local arrangement of the spins, different DQC
subject to different perturbations and, therefore, in genera
uniform DQ decay process is observed.

Experimentally, DQ buildup curves including the DQ d
cay are obtained from a series of two-dimensional ro
synchronized spectra with increasing excitation timeτexc=
n · (τR/2) wheren = 1, 2, 3, . . . . The DQ signal intensitie
of all spectrally resolved peaks are evaluated by integration
then plotted as a function ofτexc. Strong dipolar couplings giv
rise to pronounced DQ decay effects and hence require MA
be applied at high spinning frequencies, such that, on the o
hand, great demands are made on the performance of the r
pling pulse sequence. As a consequence of these complica
DQ buildup measurements have to date only been succes
carried out on systems where the dipolar couplings are cons
ably weaker than in dense and rigid1H systems, e.g., in mobil
polymer melts (49, 50) or in liquid-crystalline phases (66) or,
alternatively, in nonproton systems with weaker homonuc
dipolar couplings, e.g.,31P–31P in crystalline phosphates (96)
or thiophosphates (6). In all these examples, the experime
tal DQ buildup curvesI (i j )

DQ (τexc) have been fitted by a sem
empirical function, which combines the initial squared sig
increase from theory with an empirical exponential decay,

I (i j )
DQ (τexc) = A · (D(i j )τexc

)2 · exp

(
−τexc

τ

)
, [113]

whereA contains several constants and is fixed for a serie
experiments. In this way, the relative strengths of dipolar c
plings are straightforwardly accessible and, furthermore, the
cay timeτ , which represents the effective relaxation time of
two-spin correlations during the DQ excitation, can be de
mined. Combining these two parameters, DQ buildup cu
provide information about both the pair interactions and the
tent of perturbations acting on them.

However, in dense and rigid1H systems, the DQ buildup ap
proach is often undesirable because there are only a few
intensity values experimentally accessible before the decay
in. This experimental limitation results from the combination
the following two features: First, the presence of strong dip
couplings restricts the initial DQ buildup to very short excitat
times and, second, the basic two-pulse segment of recou
pulse sequences allows only time increments of1τexc= τR/2.
Additionally, the pulse sequence needs to be applied on
scales of at leastτexc = 2τR · · ·4τR in order to compensat
for experimental imperfections or unwanted additional inter
tions, such as frequency offsets. Therefore, the few acces
data points may even suffer from a relatively pronounced ex
imental inaccuracy.

In conclusion, from a practical point of view, the approa
of choice for dense and rigid1H systems is the recording of

two-dimensional DQ spectrum for the shortest possible ex
tation time, i.e.,τexc = τR/2, at the maximum available MAS
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frequency, coupled with an internal or external reference
intensity calibration. In terms of accuracy, the external re
ence is expected to be superior to the internal reference, bu
marked discrimination of DQ signal arising from remote co
plings, I (i j )

DQ ∝ r−6
i j , drastically reduces the effect of all metho

ical and experimental imperfections on the resulting prot
proton distances. Note that a deviation of±50% in the observed
signal intensity gives rise to an error of only±10% in the dis-
tance. Hence, drawing attention to the ease with which the ex
iments can be performed,1H DQ MAS spectra provide quic
and remarkably detailed insight into the structure of1H spin
systems and are well suited as a routine method to subs
characterization in the solid state. In particular, different str
tural alternatives can often clearly be distinguished (98).

3.5. Mechanisms of Rotor Modulation

After considering rotor-synchronized experiments in the p
vious section, we now turn to the modulations introduced
MAS when incrementing the time dimensionst1 and t2 in ar-
bitrary steps, i.e.,1t1,2 6= τR. Concerning the final detectio
periodt2, however, no further discussion of the effect of MAS
necessary, since this period is, in principle, a simple one-p
experiment performed on a nonequilibrium state of longitud
magnetization, whose amplitude is modulated by the prev
periods of MQ excitation, evolution (duringt1), and reconver-
sion. Hence, duringt2, the rotor modulations give rise to th
familiar sideband patterns, which only provide limited acc
to structural information (see Section 2.10). In fact, at the h
MAS frequencies required for sufficient spectral resolution
rigid 1H systems, the intensities of these sidebands are in
cases negligible as compared to the centerband. Recall that
disadvantages of dipolar SQ MAS sideband patterns initiate
DQ approach. Therefore, we now focus on the rotor modulat
acting on the MQCs duringt1 and on the mechanisms respon
ble for the generation of MQ MAS sideband patterns (37).

3.5.1. Reconversion Rotor Encoding (RRE)

At first, we concentrate on the reconversion, neglecting
actual evolution of the coherences under the rotor-modul
interactions duringt1. Whent1 is incremented in arbitrary step
the rotor orientations at the beginning of the excitation and
conversion period will not be identical and, hence, the rotor
pass through different sequences of orientations in both pe
(see Fig. 22). Therefore, the integrated dipolar interactions
sponsible for the excitation and the reconversion of MQCs d
with respect to their phases. Taking the rotor phase of the e
tation as a reference, the phase of reconversion is shifted o
other words—thereconversionis rotor-encoded. Without caus-
ing any further evolution, MAS modulates the MQCs by me
of a phase encoding which arises solely as a consequence
two-dimensional character of the experiment. Hence, all MQ

ci-are subject to this encoding mechanism, even those which do
not evolve duringt1.
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FIG. 22. Schematic representation of the mechanisms responsible fo
generation of spinning sidebands in a MQ MAS experiment. (a) No sideba
are observed in rotor-synchronized experiments. (b) In a non-rotor-synchron
experiment, sidebands are generated by RRE and ERM, with the former b
due to the rotor-phase shift between excitation and reconversion and the
relying on the action of perturbing couplings on the observed MQC.

Experimentally, MQCs can be excited by a pulse seque
consisting of segments of the form 90◦q–τR/2–90◦q′ , as has been
discussed in Sections 3.2 and 3.3. Being concerned with1H
systems, only the spatial partsωD of the dipolar interactions
depend on the rotor orientation, with the integralsÄD(0, τR/2)
andÄD(τR/2, τR) over the intervals [0, τR/2] and [τR/2, τR]
differing only with respect to their signs (see Eq. [85]). Intr
ducing a MQ evolution periodt1 by applying a pulse sequence o
the form (x–x̄)exc–t1–(y–ȳ)rec, the integrated spatial parts of th
dipolar interactions for excitation and reconversion, accord
to Eq. [30], are given by

Ä
(i j )
D

(
0,
τR

2

)
= ω

(i j )
D

ωR
·
√

2 sin 2βi j sinγi j ,

and

Ä
(i j )
D

(
τR

2
+ t1, τR+ t1

)
=−ω

(i j )
D

ωR
·
√

2 sin 2βi j sin(ωRt1+γi j ).

[114]

It is clear that the expression for the excitation is identica
that of Eq. [86], because it is independent oft1. However, the
reconversion is rotor-encoded by the termωRt1 in the argument
of the sine function. Consequently, no rotor modulations occu
t1 is incremented in steps of rotor periods (as has been assu

for the discussion of the rotor-synchronized MQ spectra in t
previous section), but as soon ast1 6= nτR, rotor echoes and
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MAS sidebands are induced in the MQ time signal and in
MQ spectrum, respectively. Considering, for example, spin-
DQCs and CH3 TQCs, the time signals can be written usi
Eqs. [83] and [107] as

S(i j )
DQ(t1) ∝ sin

(
Ä

(i j )
D

(
0,
τR

2

))
· sin

(
Ä

(i j )
D

(
τR

2
+ t1, τR+ t1

))
∝ sin(Ci j · sin(ωRt1)) [115]

and

SCH3
T Q (t1) ∝

[
cos

(
Ä

(i j )
D

(
0,
τR

2

))
− 1

]
·
[

cos

(
Ä

(i j )
D

(
τR

2
+ t1, τR+ t1

))
− 1

]
∝ cos(Ci j · sin(ωRt1))− 1, [116]

respectively. The coefficientCi j includes all terms which do no
depend ont1, but only on the orientation of the dipolar couplin
vector (βi j , γi j ), for which, in powdered samples, an orien
tional averaging procedure has to be performed. The resu
expressions sin(Ci j sin(ωRt1+γi j )) and cos(Ci j sin(ωRt1+γi j ))
can be written as Fourier series, whose terms contain Be
functionsJn(Ci j ) of nth order (2, 17):

S(i j )
DQ(t1) ∝ sin(Ci j · sin(ωRt1))

= 2
∞∑

n=1

J2n+1(Ci j ) sin((2n− 1)ωRt1) [117]

and

SCH3
T Q (t1) ∝ cos(Ci j · sin(ωRt1))

= J0(Ci j )+ 2
∞∑

n=1

J2n(Ci j ) cos(2nωRt1). [118]

From the Fourier series it is clear that the DQ and TQ sig
are modulated by odd and even multiples of the spinning
quency, respectively. Thus, after a Fourier transformation it1,
the spin-pair DQ and the CH3 TQ spectrum consist of solel
odd- and even-order MAS sidebands, respectively. The in
sity distribution over the MAS sideband pattern is determi
by the Bessel functions and the coefficientsCi j , with the latter
depending on the orientation (βi j , γi j ) and on the ratioω(i j )

D /ωR

of the dipolar coupling strengthD(i j ) = 1
3ω

(i j )
D and the MAS fre-

quencyωR. After the orientational dependence has been ta
into account by, e.g., a powder averaging procedure, the
ω

(i j )
D /ωR, which can alternatively be written as a product of

dipolar coupling strengthD(i j ) and the excitation timeτexc, rep-

heresents the essential parameter which determines the envelope
of the MAS sideband pattern.
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FIG. 23. Calculated MAS sideband patterns of a spin-pair DQ (left) a
a CH3 TQ spectrum (right) for a range ofD(i j )τexc. In the TQ spectra, the
centerbands are cut to14 of their full height.

In Fig. 23, calculated MAS sideband patterns of a spin-p
DQ and a CH3 TQ spectrum are displayed for the range
D(i j )τexc/2π = 0 · · ·3. Obviously, the DQ and TQ spectra co
sist of only odd- and even-order sidebands, respectively.
larger the productD(i j )τexc, the more sidebands appear. F
D(i j )τexc→ 0, the spin-pair DQ spectrum converges towar
spectrum consisting of two resonance lines of equal intensi
±ωR, while the CH3 TQ spectrum converges toward a triplet
lines at−2ωR, 0, 2ωR with an intensity distribution of1 : 3 : 1
(clearly, forD(i j )τexc= 0 the signal intensity drops to zero). Fro
a practical point of view, a sideband pattern which is spread o
a wide frequency range is disadvantageous, because the
tral intensity is distributed over a lot of weak sidebands wit
poor signal-to-noise ratio. Therefore, spin-pair DQ and CH3 TQ
spectra should possibly be recorded withD(i j )τexc/2π <3 and
D(i j )τexc/2π <1.5, respectively.

In conclusion, the rotor encoding of the reconversion ma
MQ spectra split into sidebands. Although, for experimental
plications to1H systems, the relevant MQ orders are in m
cases limited to DQCs and TQCs, it is clear from tensor a
bra and from analogy considerations that, in general, the R
mechanism produces solelyodd-order sidebands foreven-order
MQCs and vice versa.

3.5.2. Evolution Rotor Modulation (ERM)
In the previous section, we have discussed an indirect t
of mechanism leading to spinning sidebands in MQ spec
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However, besides this rotor encoding of the reconversion
riod, the MQCs are also, during the evolution periodt1, in a
more direct way subject to rotor-modulated interactions. In fa
the latter mechanism is well known from the one-pulse expe
ment under MAS and from the resulting sideband patterns of
spectra. The essential condition for the presence of such a ro
modulated evolution is that the considered MQCs do evo
under anisotropic interactions duringt1 at all. With respect to
1H systems, this evolution is absent for two special cases:
DQC of a spin pair and the TQC of a methyl group, provided th
there is no chemical shift anisotropy (as is assumed through
in our discussion) and, more importantly, that there are no di
lar couplings to further spins. As soon as the MQC interacts w
a further spin not involved in the coherence or, even more
strictively, as soon as the mediating dipolar couplings within
MQC are not all equivalent, the MQC evolves under dipolar
teractions, whose spatial parts are modulated by the sample
tion. In this way, rotor modulations enter into the MQ time sign

Usually, it is not possible to describe this evolution usi
a simple analytical formalism, because in dense1H systems
the dipolar coupling network tends to generate higher spin c
relations which can be handled only by use of series exp
sions (see Section 2.5). For example, from Eq. [110] it c
be seen how a three-spin DQC arises from a spin-pair D
between the spinsi and j via the additional dipolar coupling
Ĥ

(ik)
D (t) = ω

(ik)
D (t)T̂

(ik)
2,0 of the spini to the third spink. As-

suming that this process occurs during the evolution periodt1,
the three-spin DQC introduces a rotor modulation into the
herence, because it includes the integrated spatial part of
additional couplingÄ(ik)

D (τexc, τexc+ t1) = ∫ τexc+t1
τexc

ω
(ik)
D (t) dt as

a coefficient.
To discuss the rotor-modulated evolution in a clear and

structive way, we consider the DQC of the protons of a f
rotating methyl group. As has already been pointed out
Eqs. [105] and [107], the CH3 DQ signal consists of two- and
three-spin contributions, (T̂2,2−T̂2,−2) and (T̂3,2+T̂3,−2). Since
the DQ state does not include all spins and couplings prese
the methyl group, as is the case for the CH3 TQC, both DQ
terms evolve after the excitation under the intramethyl dipo
couplingsĤ D(t) = ωD(t)T̂2,0 (16):

(T̂2,2− T̂2,−2)

∫ τexc+t1
τexc

Ĥ D (t) dt

−−−−−−−→ cosÄev(T̂2,2− T̂2,−2)

− 2i√
3

sinÄev(T̂3,2+ T̂3,−2)

and

(T̂3,2+ T̂3,−2)

∫ τexc+t1
τexc

Ĥ D (t) dt

−−−−−−−→ − 2i√
3

sinÄev(T̂2,2− T̂2,−2)

+ cosÄev(T̂3,2+ T̂3,−2). [119]

ype
tra.Äev denotes the integrated spatial part of the dipolar interaction
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during t1, i.e.,Äev = ÄD(τexc, τexc+ t1), and thet1dependence
results in a rotor modulation. Since the system under consid
tion is an isolated methyl group, the evolution of the DQC dur
t1 is restricted to a redistribution of the two- and three-spin c
tributions, with both terms being weighted by additional pha
factors, sinÄev and cosÄev. Denoting the integrated spatial pa
of the excitation periodÄD(0, τexc) byÄexc, the initial state

i

2
sinÄexc(T̂2,2− T̂2,−2)

− 1

2
√

3
(cosÄexc− 1)(T̂3,2+ T̂3,−2) [120]

evolves to[
i

2
sinÄexccosÄev + i

3
(cosÄexc− 1) sinÄev

]
· (T̂2,2− T̂2,−2)+

[
1√
3

sinÄexcsinÄev

− 1

2
√

3
(cosÄexc− 1) cosÄev

]
· (T̂3,2+ T̂3,−2). [121]

As has been described in Section 3.3.3, the reconversio
the DQCs gives rise to a further multiplication of the coefficien
by terms analogous to those of the excitation. Thus, the dete
CH3 DQ signal is given by (37)

SCH3
DQ (t1) ∝ sinÄexccosÄev sinÄrec

+ 1

2
(cosÄexc− 1) sinÄev sinÄrec

+ 1

2
sinÄexcsinÄev(cosÄrec− 1)

− 1

4
(cosÄexc− 1) cosÄev(cosÄrec− 1), [122]

whereÄrec = ÄD(τexc+ t1, 2τexc+ t1). The rotor modulations,
reflected by thet1 dependencies, now appear in the argume
Äev =

∫ τexc+t1
τexc

ωD(t) dt andÄrec =
∫ 2τexc+t1
τexc+t1

ωD(t) dt, arising
from the evolution and the reconversion period, respectiv
The rotor modulation introduced by theÄev-term is responsi-
ble for the generation of MAS sidebands by means of a mec
nism which will henceforth be calledevolution rotor modulation
(ERM), while theÄrec-terms lead to the generation of sideban
via the RRE mechanism described in the previous section.
complication of both theÄev- and theÄrec-term depending ont1
does not allow the DQ signalSCH3

DQ (t1) to be expanded into a sim
ple Fourier series with Bessel functions as coefficients. Hen
SCH3

DQ (t1) cannot be written in the same form as the spin-pair D
signal and the CH3 TQ signal (see Eqs. [115] to [117]).
In Fig. 24, experimental and calculated SQ, DQ, and TQ sp
tra of a spin-32 system are displayed. The experiments were n
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FIG. 24. (a) Experimental and (b) calculated SQ, DQ, and TQ spectr
the23Na nuclei in sodium nitrate, applying MAS atωR/2π = 15625 Hz. The
excitation time for the DQCs and TQCs isτexc = τR/2 = 32µs. The spin-32
nuclei with a quadrupolar coupling constant ofCQ = 337 kHz and negligible
asymmetry, i.e.,η ≈ 0, serve as a model for the protons of an isolated me
group with a hypothetical interproton distance of 0.129 nm.

performed on methyl groups, because real samples do no
vide spatially isolated methyl units without perturbing inter
tions, as is desirable for demonstration purposes. Instead
ing advantage of the analogy of a methyl group and a sp3

2
nucleus (see Section 3.3.2), the measurements were perfo
on the23Na nuclei of crystalline sodium nitrate, which rep
sent a first-order quadrupolar system with a quadrupolar
pling constant ofCQ = 337 kHz and a symmetric electri
field gradient tensor, i.e.,η= 0. Converting the quadrupola
into a dipolar coupling strength by use of Eqs. [21] and [2
the 23Na nucleus in sodium nitrate corresponds to a me
group with a hypothetical dipolar coupling ofD(i j ) = 2π · 28.1
kHz or, equivalently, with a hypothetical interproton distance
0.129 nm.

In the TQ spectrum, the MAS sidebands arise solely f
the rotor encoding of the reconversion (RRE mechanism),
are hence located at even multiples of the rotor frequency38).
The calculated spectrum was simulated using Eq. [115]. In
DQ spectrum, both mechanisms responsible for the gener
of sidebands, the reconversion rotor encoding (RRE) and
evolution rotor modulation (ERM), superimpose, leading to
following consequences for the sideband pattern, which are
from an inspection of Fig. 24: First, the sidebands now appe
all multiples of the MAS frequency, because the signal canno
written in the simple form cos(Ci j sin(ωRt1 + γi j )) and, hence
cannot be decomposed in the Fourier components of either
or odd multiples ofωR only. Second, as compared to the T
spectrum, the spectral range, over which the sideband pa
is spread, is widened. The additional terms sinÄev and cosÄev

give rise to a product of the form cosÄev cosÄrec = 1
2 cos(Äev+

Ärec)+ 1
2 cos(Äev−Ärec), which includes the sumÄev+Ärec of

the arguments and hence the sum of the frequencies, so tha

ec-
ot
the Fourier transformation sidebands are expected to be spread
over a wider frequency range.
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For comparison, the SQ spectrum is also displayed in Fig.
since there is no reconversion period in the one-dimensi
SQ MAS experiment, the sidebands are generated solely b
rotor-modulated evolution. The SQ time signal of a methyl gro
or, equivalently, of a spin-32 nucleus is given by

SCH3
SQ (t) ∝ 3 cosÄD(0, t)+ 2, [123]

as is clear from the (̂T1,1− T̂1,−1) term in Eq. [106] after appli-
cation of the first pulse. Since, as in the TQ case, again only
mechanism is responsible for the generation of sidebands
spectral width is similar to that of the TQ spectrum and consid
ably smaller than that of the DQ spectrum. The pattern con
of sidebands of all orders, because—as in the DQ case—th
gumentÄD(0, t) in Eq. [123] does not include only one sine
cosine modulation and, hence, the signal cannot be writte
cos(Ci j sin(ωRt + γi j )).

After having demonstrated, using the simple example o
methyl group, how the two mechanisms RRE and ERM g
erate MAS sidebands in MQ spectra, it is straightforward
derive a criterion which allows the decision to be made a
what extent an observed spin-pair DQC or a CH3 TQC is sub-
ject to perturbing interactions to neighboring spins: As long
there is no perturbing interaction present, the MAS sideb
patterns of spin-pair DQ and CH3 TQ spectra consist of only
odd- and even-order sidebands, respectively. Any further c
pling gives rise to additional sidebands of the other order, wh
intensities allow the degree of perturbation or, conversely,
degree of isolation of the spin pair or the methyl group to
determined. The additional sidebands are generated prim
by means of the ERM mechanism, i.e., by the evolution of
MQCs under perturbing interactions duringt1. For reasons of
completeness, it should be noted that, theoretically, weak a
tional sidebands could also arise from the action of perturb
dipolar couplings during the excitation and reconversion per
i.e., even in the (hypothetical) absence of any evolution du
t1. However, this mechanism of sideband generation relies
the excitation of higher spin correlations which always arise
of existing two-spin correlations and which therefore represe
second step in the excitation process. Consequently, such hi
order effects are usually small, because the excitation tim
adjusted such that it suffices for the generation of two-spin
relations, but not for the subsequent and unwanted forma
of three- and higher-spin correlations. As a result of this, ad
tional sidebands generated in this way are a concomitant
nomenon of minor and mostly negligible importance, becau
experimentally, they are very weak and, in addition, alw
concealed by the dominating sidebands arising from the E
mechanism.

In conclusion, MAS sideband patterns permit the quantifi
tion of dipolar coupling strengths in spin pairs or within meth

groups and, at the same time, provide an estimate as to w
extent the underlying approximations are valid for the co
ND SPIESS
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plex dipolar coupling network under inspection by quantifyi
the degree of perturbation. As to measuring dipolar coup
strengths, MAS sideband patterns are superior to DQ buil
curves, because no further calibration of the signal intens
is required. Instead, the patterns are “inherently” calibrated
allow absolute values for coupling strengths to be derived. Mo
over, in DQ MAS sideband experiments, thet1 dimension serves
as a spectral DQ dimension as well as a period for introduc
the rotor encoding. Hence, DQ coherences between diffe
pairs of spins can readily be resolved intwo-dimensional DQ
MAS spectra together with the individual MAS sideband p
terns, while for the DQ build up approach the distinction of D
coherences requires athree-dimensional experiment whereτexc

andt1 are incremented independently.

3.6. Spin Topologies and MAS Sideband Patterns

In the previous section we have demonstrated that MAS s
band patterns of1H DQ and TQ spectra can, in principle, serve
a source of information about dipolar coupling strengths, wh
the chemical shift resolution allows the coupled spins form
a coherence to be identified. In this section, we now disc
how much information can be obtained from the sideband p
terns about the actual geometry of the coupled spins. Bes
the “original” spin-pair or methyl pattern, which measures t
strength of the pair or the intramethyl coupling, the additio
sidebands arising via the ERM mechanism duringt1 provide par-
ticular insight into the spatial arrangement of the coupled sp
in the system, including perturbing spins.

This property makes the MQ MAS sideband patterns supe
to rotor-synchronized spectra, because the latter only con
the signal intensities of the resolved MQCs. From the sig
intensities, an effective dipolar coupling strength can be deriv
corresponding to the sum over all pair couplings between s
of the respective species, but no further details about the te
of the sum are accessible. This means, for example, that a su
many weak couplings cannot be distinguished from a sum ov
few strong couplings. Therefore, most of the information ab
the geometry of the dipolar-coupled spin system is conceale
long as there is only a single intensity parameter experiment
available.

In the following, we will discuss the MAS sideband patter
of DQ and TQ spectra obtained from simulations of three- a
four-spin systems as well as from experiments on a (CH3+ H )
model compound. In this way, the effect of an additional p
turbing spin on the spectra of a spin pair or a methyl gro
shall be investigated. The parameterξ , correlating the perturb-
ing couplingDpert to the MAS frequencyωR (see definition in
Eq. [64]), serves as a measure of the strength of the perturba

3.6.1. Spin-Pair DQ Spectra

By means of numerical simulations, we consider a pro
pair
hat

m-
spin pair with a dipolar coupling ofD = 2π · 20 kHz, corre-
sponding to a distance ofrpair = 0.18 nm, as is known from CH2
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groups. Resembling realistic situations, this pair is perturbed
a couplingDpert varying between 5 and 75% of the dominatin
pair coupling, corresponding to a distance range between.5
and 0.2 nm from the remote spin. With respect to the perturb
couplings, the three-spin system can adopt two extreme geo
tries, whose SQ MAS spectra have already been investig
in Section 2.7 (see Fig. 4): first, a linear arrangement wh
the coupling between the remote spin and one of the pair s
is negligible and where the whole three-spin system beha
inhomogeneously due to the colinear orientation of all dipo
coupling vectors; and second, a triangular1-arrangement where
the spins are placed on the vertices of an isosceles triangle
where the two perturbing couplings are hence of equal stren
The chosen MAS frequency, 10 kHz, is rather low, resulting i
perturbation parameterξ ranging from 0.1 to 1.5. The excitatio
time for DQCs is set toτexc = τR/2 = 50µs, corresponding
to Dpairτexc/2π = 1 for the pair. In accordance with the expe
iments, the length of the 90◦ RF pulses is 3µs throughout the
following simulations.

For vanishing perturbationsξ → 0, i.e., for the isolated spin
pair, we expect, under these conditions, a symmetric DQ M
sideband pattern, consisting of onlyodd-ordersidebands, with
the first- and the third-order sideband being of almost eq
intensity (see the DQ spectrum forD(i j )τexc/2π = 1 in Fig. 23).
Irrespective of the spin geometry, this pattern is observed in
simulated spectra displayed in Fig. 25.

In the DQ spectra for both three-spin geometries depic
in Fig. 25, the main effect of the perturbation introduc
by the third spin is the appearance of MAS sidebands
even multiples of the MAS frequency, including the cent
of the spectrum. Depending on the spin geometry, either
centerband or the second-order sideband are the most in
of these additional signals which clearly arise from the ER
mechanism duringt1 (see Figs. 26a and 26b). Apart from th
effect, in the1-arrangement, the perturbation by a third sp
severely broadens the lines, while in the linear arrangem
the spin system behaves inhomogeneously under MAS;
no line-broadening effects are observed. These features
known from the MAS sidebands in SQ spectra (see Fig.
Moreover, the presence of perturbing couplings also gives
to distortions of the original spin-pair pattern at odd multipl
of the MAS frequency, although this is less obvious than
appearance of additional sidebands and the line broadenin

In the diagrams in Fig. 26, the changes of the DQ MAS si
band patterns are plotted versus the perturbationξ caused by a
third spin. The three-spin systems adopt either a linear or a1-
arrangement with inhomogeneous or homogeneous prope
respectively. Up to a perturbation of aboutξ < 0.5, the distor-
tions of the patterns (Figs. 26a and 26b) as well as the los
DQ signal intensity (Fig. 26c) are small enough to allow dipo
couplings strengths to be determined with acceptable accu
since considering the range 0.5< D(i j )τexc/2π <1.0 a deviation

of 10% in the intensity ratio of the third- and first-order sideban
leads to an error of about 5% in the dipolar coupling streng
Q COHERENCES 195
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FIG. 25. Simulated DQ MAS sideband patterns for a spin pair plus a pertu
ing spin, with the three-spin system adopting a linear and a1-arrangement. The
parameters areDpair = 2π ·20 kHz,ωR = 2π ·10 kHz, andτexc= τR/2= 50µs.

corresponding to an error of less than 2% in the internucl
distance. Note that, in inhomogeneous spin systems, the ov
DQ signal intensity is even constant, because no dephasing
curs duringt1. However, any homogeneous character gives r

FIG. 26. Effect of a perturbationξ caused by a third spin on the DQ MAS
sideband pattern of a spin pair, with the three-spin system adopting either a li
or a1-arrangement: (a, b) Sideband intensities, withn denoting the sideband
order. (c) Overall DQ signal intensity. (d) Ratio of the odd-order sidebands
i.e., the “original” spin-pair pattern, to even-order sidebands arising from

d

th,
perturbation.1ω denotes a chemical shift difference between the pair and the
perturbing spin.
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to coherence losses, since then MAS does not fully refocus,
ing the reconversion period, the effect of the dipolar interacti
present in the excitation period. With respect to the perturb
effects, the situation is improved by the presence of a chem
shift difference between the perturbing spin and the pair, bec
the frequency difference1ω assists the MAS in decoupling th
dipolar-coupled network and reduces the dipolar perturba
by a factor of aboutξCS = 1ω/ωR. This is demonstrated i
Fig. 26d, where the ratio of the odd-order sidebands, i.e.
“original” spin-pair pattern, to the even-order sidebands aris
from the perturbation is plotted versus the dipolar perturba
ξ . Without a chemical shift difference, the even-order signals
below 10% for perturbationsξ < 0.5, while a shift difference
of1ω = 1

3ωR, which corresponds toξCS= 0.33, increases thi
10% signal threshold toξ < 0.7.

After having considered the two extreme geometries o
three-spin system, we now briefly turn to the intermediate c
by inspecting angular geometries, as are depicted in the
in Fig. 27a. The simulated spectra in Fig. 27a are based o
parameters given in the figure legend. On increasing the a
θ from 0◦ to 90◦, the system undergoes a continuous cha
from an inhomogeneous to a homogeneous character, be
the projection of the vector of the perturbing dipolar coupl
onto the direction of the pair-coupling vector decreases acc
ing to cosθ . Therefore, following a sinθ dependence, the line
become more and more broadened when increasing the
θ . Moreover, the sideband pattern is characteristically distor
For θ → 0◦ andθ → 90◦, the additional signals arising from
the perturbing interactions via the ERM mechanism are con
trated in the centerband and the second-order sidebands, re

FIG. 27. (a) Simulated DQ MAS sideband patterns for a three-spin
ometry, as depicted in the inset, with the angleθ ranging from 0◦ to 90◦. The
parameters areDpair = 2π · 20 kHz, Dpert = 2π · 10 kHz (for the stronger
coupling),ωR = 2π · 10 kHz, resulting in a perturbation ofξ = 1.0 . . .1.1,
andτexc = τR/2 = 50µs. (b) Intensities of the centerband (n = 0) and the

second-order sidebands (n = 2). (c) Integrated DQ signal intensities of the
spectra shown in (a).
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tively. The original spin-pair pattern, located at the odd-ord
sidebands, also depends, though less pronounced, on the a
θ . Forθ = 50◦ · · ·60◦, the intensity of the first-order sidebands
measured relative to the third-order sidebands, passes thro
a minimum. The same behavior is observed for the overall D
signal intensity, which is reduced to half of the maximum in
tensity, when the angleθ is close to the “magic” angle of 54.7◦.
The latter feature arises as a consequence of the complex
entational dependence of a DQC which is subject to a furth
dipolar coupling and, in this way, resembles to some extent
familiar (3 cos2 θ − 1) dependence.

Thus, the MAS sideband pattern of a spin-pair DQ spectru
in principle provides information about both the strength and t
relative orientation of a perturbing coupling to a third spin.
should be noted, however, that in dense multispin systems e
pair is likely to be subject to more than one or two perturbing co
plings and, consequently, there are more unknown orientatio
parameters to be determined in the system under investigat
If the spins are resolved with respect to their chemical shifts
is possible to access these parameters separately by mea
DQ MAS sideband patterns.

3.6.2. Methyl DQ Spectra

Usually, under fast MAS conditions, the1H signal of methyl
groups can be spectrally resolved from other1H resonances ex-
cept where there are many other alkyl resonances. Perturb
couplings to remote spins do not only give rise to a distorti
of the original methyl sideband pattern, but also to DQCs b
tween the methyl group and the remote spin, which form th
own MAS sideband pattern. The latter type of coherence w
henceforth be referred to as a (CH3 + H) DQC. In addition to
the advantage of being spectrally resolved, the methyl grou
also particularly suitable for serving as a sensor for the stren
and the orientation of dipolar couplings to neighboring spin
because, for topological reference purposes, the fast rotatio
the three spins around their threefold symmetry axis provide
single and well-defined average position of the methyl proto
as well as a well-defined axis.

However, it is important to note that, in contrast to spin
pair DQ spectra, the MAS sideband patterns of methyl DQ sp
tra consist of signals appearing atall multiples of the MAS
frequency, because the intramethyl couplings already gen
ate sidebands via the ERM mechanism. Hence, although
strength of the perturbation can still be determined from t
distortion of the original methyl pattern and, more importantl
from the signal of the (CH3 + H) DQCs, the same information
is not available in a simple and sensitive way by the presence
additional sidebands. In fact, this disadvantage of methyl D
spectra is one of the main motivations for recording methyl T
spectra, since, in analogy to spin-pair DQCs, a pure meth
TQC is not subject to the ERM, but only to the RRE mech

nism generating sidebands, such that additional sidebands indi-
cate the presence of perturbing couplings acting on the methyl
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groups. This TQ approach will be discussed in the followi
section.

We now focus on the MAS sideband patterns of CH3 and
(CH3 + H) DQCs. The simulations are based on the four-s
system depicted in Fig. 28 with the parameters given in
figure legend. Under these conditions, the DQ sideband pa
of an isolated methyl group consists of sidebands of up to the
enth order. A fourth spin of typeB approaching a methyl group
AAAalong its threefold symmetry axis gives rise to a distorti
of the MAS sideband pattern of the pure methyl DQ signal
well as to an additional sideband pattern originating from DQ
of the typeAB. The latter feature allows the spectrum to
decomposed into its CH3 and its (CH3+H) signal pattern, as
is demonstrated in Fig. 28. Consider first the distortions of
pure methyl pattern: It is clear from Fig. 29a that the first-ord
sideband is affected most, while all other signals are more
less constantly decreasing for increasing perturbations. This
crease of the methyl signal is also reflected in Fig. 29b, wh
the (CH3+H) signal is built up. However, the (CH3+H) signal
intensity is too weak to compensate for the loss of methyl sig
and, therefore, the overall DQ intensity decreases due to the
mation of higher spin correlations within the four-spin syste
However, up to a perturbation ofξ <0.4, such higher-order cor
relations contribute less than 5% to the overall DQ signal a
are negligible. With respect to the geometry of the spin syst
the relative intensities of the CH3 and the (CH3+H) signal thus
allow the effective perturbationξ acting on the methyl group to
be determined.

Although the effects are less pronounced, the same infor
tion is, in principle, also obtainable from the distortion of th
CH3 pattern. More detailed insight into the spin topology is p
vided by the sideband pattern of the (CH3+H) DQ signal, which
allows the angleθ to be straightforwardly derived. Figure 29
clearly shows that the relative intensities of the first-order si
bands and the centerband are particularly sensitive to the
gle θ , since the pattern changes from a centerband-domin
spectrum forθ→ 0◦ to a spectrum which is dominated by th
first-order sidebands forθ→ 90◦. Hence, combined DQ MAS
sideband patterns of CH3 and (CH3 + H) DQCs represent a
sensitive probe for spin topologies.

3.6.3. Methyl TQ Spectra

Being combined into a TQC, the three protons of a met
group and the intramethyl proton–proton couplings act a
single entity such that, in the TQ spectrum of an isolated me
group, the MAS sidebands are solely generated by the R
mechanism. Applying a proper excitation pulse sequence,
sidebands thus appear only atevenmultiples of the MAS fre-
quency. The absence of any “internal” dipolar evolution dur
t1 makes the TQC of a methyl group a very sensitive probe for
ditional couplings to neighboring spins, since any of these g

rise to a dipolart1-evolution and, hence, to the generation of od
order sidebands via the ERM mechanism (see Section 3.5.2
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FIG. 28. Simulated DQ MAS sideband patterns for the three protons
a fast rotating methyl group plus a fourth spin, whose resonance frequenc
shifted by1ω = 2π · 3.3 kHz relative to the methyl signals. The paramete
are Dpair = 2π · 8.8 kHz, corresponding to an interproton distance ofrpair =
0.19 nm; Dpert = 2π · 2.6 kHz for θ = 0◦, corresponding to a distance of
rpert = 0.32 nm;ωR = 2π · 10 kHz, resulting in a perturbation ofξ = 0.26;
and τexc = τR/2 = 50µs. Below the spectrum (θ = 0◦), the CH3 and the
(CH3+H) patterns are schematically extracted. For comparison, the (CH3+H)
pattern obtained forθ = 90◦ is also displayed.

(38)), as can be clearly seen from the simulated spectra sho
in Fig. 30a.

In Fig. 30b, the intensity of the sidebands is plotted versus
perturbationξ . The intensity increase at the first-order sideba
is apparent, while the signals of the original TQ pattern at t
centerband and the second-order sidebands constantly decr
As has already been observed for the methyl DQ coheren
the overall TQ signal decreases as well, because the buildu
the “mixed” (CH3 + H) TQC cannot compensate for the los
of the methyl TQ signal (see Fig. 30c). Comparing the “mixe
d-
and
TQC with the “mixed” DQC (see Fig. 29b), it is clear that the
DQC is built up faster than the TQC; this is what we expect from
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FIG. 29. Sideband intensities in the simulated DQ MAS spectra of a me
group plus a perturbing spin (see Fig. 28). (a) Intensity distribution over
methyl pattern, withn denoting the sideband order. (b) DQ signal intensity
the CH3 and the (CH3 + H) coherences for a methyl group perturbed by
fourth spin which is located on the threefold symmetry axis at distancesrpert=
0.5 . . .0.16 nm. (c) Intensity distribution over the (CH+ H) pattern for the
3

four-spin geometry depicted in Fig. 28, withθ ranging from 0◦ to 90◦.
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FIG. 30. (a) Simulated TQ MAS sideband patterns for a methyl gro
perturbed by a fourth spin, which is located on the threefold symmetry a
(see inset) and whose resonance frequency is shifted by1ω = 2π · 3.3 kHz
relative to the methyl signals. The further parameters areDpair = 2π · 9 kHz,
Dpert = 2π · 0.9 . . .9 kHz,ωR = 2π · 10 kHz, resulting in a perturbation of
ξ = 0.1 . . .0.9, andτexc = 1

2τR = 50µs. (b) Intensity distribution over the
methyl TQ sideband pattern, withn denoting the sideband order. (c) TQ sign
intensity of the CH3 and the (CH3 + H) coherences.

the excitation behavior in the short-time limit, as has been d
cussed in Section 3.3.3. However, it is interesting to note that
the same perturbation represented by the parameterξ , the distor-
tions occurring in TQ spectra are stronger than those in the
spectrum, because, already forξ ≥ 0.1, the additional odd-order
TQ sidebands contribute more than 5% to the overall intens
while in the DQ spectra the additional sidebands are neglig
for perturbations up toξ < 0.2. Obviously, the TQCs are more
sensitive to dipolar couplings. This fact is well known from in
vestigations of quadrupolar systems, since quadrupolar MQ
dipolar couplings at an amplification to thenth power (25, 37).
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Here, it can be seen that thisn-fold sensitivity ofnth-order MQCs
is also observed for dipolar coherences in1H systems.

In spite of this pronounced sensitivity and the appearanc
additional sidebands, the original methyl TQ pattern allows
intramethyl coupling strength to be determined to a sufficient
curacy for perturbations of up toξ < 0.4. However, with respec
to the spin topology, the TQ spectra provide less information t
the DQ spectra, because the TQ patterns of the “mixed” TQ
are usually too weak to be exploited experimentally.

3.6.4. Decoupling Effect of MAS

In the context of the perturbations caused by additional dip
couplings on1H MQCs, a central point worth being considere
in detail is the dipolar decoupling provided by MAS. We ha
already stated that, in the fast spinning limit, MAS simplifies t
dipolar network to a superposition of spin pairs. In MQ spec
the perturbing effects, i.e., mainly the MAS sidebands aris
from the ERM mechanism, represent the deviations from
simple spin-pair approach, which can be reduced by increa
the MAS frequency, while independent of this the excitation
MQCs and the generation of a RRE sideband pattern ca
accomplished by adjusting the duration of the recoupling pu
sequence. In this way, MQ spectroscopy allows the two me
anisms responsible for the generation of MQ MAS sideba
to be straightforwardly distinguished, and the MQ experime
can be tailored to investigate either the individual pair couplin
or the topology of a small spin system.
In Fig. 31, the effect of the MAS frequency on the DQ MAS

the

sidebands in the patterns, the principal trend of a supplementary

sideband pattern of a linear three-spin systemAABis displayed.

FIG. 31. Simulated DQ MAS sideband patterns for a spin pairAA plus a perturbing spinB, whose resonance frequency is shifted by1ω = 2π · 3.3 kHz
relative to that of the pair, in a linear arrangement:Dpair = 2π · 20 kHz, Dpert = 2π · 10 kHz (the other perturbing coupling is negligibly weak),τexc = 50µs,
with MAS being applied at 10 and 20 kHz, respectively. The two sideband patterns,AAandAB, are schematically extracted from the spectra and compared to

correction is also known.
patterns expected for isolated pairs (on the right). For distinction, the even-
the 20-kHz spectrum the lines are only seemingly narrowed due to the large
COHERENCES 199
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Since the two pair couplings differ by a factor of 2, the DQ s
nal of theABcoherence is much weaker (by about a factor o
than that of theAA coherence. In the sideband patterns, wh
are schematically extracted from the spectrum in Fig. 31,
even-order sidebands indicate residual dipolar evolution du
t1. However, from the dominating pattern located at odd mu
ples of the MAS frequency, theAA pair coupling can be deter
mined quite reliably. This is demonstrated by the fact that
simulatedAA DQ MAS patterns are very similar to the patte
of the respective isolated pair, with the exception of some
nor deviations in the fifth-order sidebands which, as well as
even-order sidebands, indicate the presence of perturbing
plings. The agreement between the three-spin spectrum an
pair spectrum slightly improves at the higher MAS frequen
This improvement, demonstrating the decoupling efficiency
MAS, is much more pronounced for theABpattern, because th
ABDQC, being severely perturbed by a strong dipolar coup
between theAspins, desperately requires dipolar decoupling
thereby separation into spin pairs by MAS. At a MAS frequen
of 10 kHz, which is, in the case of theABcoherence, of exactly
the same magnitude as the perturbing coupling (correspon
to ξ = 1), theABpattern is heavily distorted, and resembles
AApattern; consequently, determining theABcoupling from this
pattern would yield a value which is far too high. By comparis
for ωR = 2π · 20 kHz (corresponding toξ = 0.5) the interpro-
ton distance of theAB pair can be determined from theAB DQ
MAS pattern to an accuracy of about+10%. Since additiona
couplings generally increase the intensity of the higher-or
order sidebands arising from the ERM mechanism are displayed in gray.Note that in
r spectral width.
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3.6.5. Acetonitrile in Hydroquinone

In this section, concluding the discussion of1H MQ MAS
sideband patterns, we demonstrate how DQ and TQ sideb
patterns allow the determination of a four-spin (CH3+H) topol-
ogy. The model sample is acetonitrile, CH3CN, in the cavities of
crystalline and deuterated hydroquinone, DO–C6D4–OD, where
20% of the deuterons are replaced by protons due to back
change processes occurring upon exposure to air, as can b
rectly determined from1H MAS one-pulse spectra (see Fig. 33a
Using this sample,1H MQ spectroscopy on methyl groups, in
cluding MQ MAS sideband patterns as well as the principal
fect of a perturbing spin, has been introduced in previous w
(37, 38).

In the crystal structure (21), depicted in Fig. 32a, six hydro
quinone molecules are located around the molecular axis o
linear acetonitrile molecule, and the deuterons of the OD gro
approximately fulfill a sixfold symmetry. According to the X-ra
structure analysis, the distance between the center of the m
protons and three deuterons isrpert≈ 0.33 nm, and the angle be
tween the molecular N–C–C axis and the three distance vec
rpert isθ ≈ 44◦. Since 20% of the OD positions are reprotonate
each methyl group has, on average, to a good approximation
neighboring OH proton, resulting in a four-spin model syst
which is schematically depicted in Fig. 32b.

Figure 33a shows the centerband of a1H one-pulse spectrum
recorded under MAS at 14 kHz. The most intense signalsA, B,
C, andC′ stem from the methyl protons of the acetonitrile (A) as
well as from the reprotonated OD and aromatic CH positions
hydroquinone (B andC, C′, respectively). The signals marke
by an asterisk are due to impurities. A noteworthy, though
this context minor, feature is the splitting of the aromatic1H

FIG. 32. (a) Crystal structure of the inclusion compound [DO–C6H4–OD]3·
CH3CN (acetonitrile hydroquinoned6-clathrate). Due to partial reprotonatio
of the DO positions, each methyl group (withrpair ≈ 0.19 nm) has on average

one neighboring HO proton atrpert ≈ 0.33 nm andθ ≈ 44◦, resulting in a1H
four-spin model system whose topology is schematically represented in (b)
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FIG. 33. 1H MAS spectra of acetonitrile in hydroquinone, recorded unde
MAS at 14 kHz. (a) Centerband of the one-pulse spectrum and peak assignm
(impurities are marked by∗). (b) Comparison of the experimental CH3 SQ MAS
sideband pattern with a calculated pattern (dotted) for a methyl group with
proton-pair coupling ofDpair= 2π · 8.8 kHz, corresponding to an interproton
distance ofrpair= 0.19 nm. (c) Comparison of the experimental CH3 TQ MAS
sideband pattern, recorded forτexc= 1

2τR, with a simulated spectrum (dotted)
for a methyl group, perturbed by a fourth spin in linear arrangement byξ = 0.14
(see Fig. 30a).

resonance into two linesC andC′ of almost the same intensity.
Provided that the spectral resolution suffices, such1H resonance
shifts are frequently observed for protons which experience s
called ring-current effects of nearby aromatic systems. In t
case of the acetonitrile sample, it is obvious that about half of t
aromatic protons of each hydroquinone molecule are orient
differently relative to neighboring benzene rings than the othe
resulting in different shielding effects. In addition to this exam
ple, similar shifts have been reported for tyrosine (92) and alkyl-
substituted hexa-peri-hexabenzocoronenes (see Section 4.2 a
(18, 19)).

From the SQ MAS sideband pattern of the methyl proton
(Fig. 33b), a proton-pair coupling ofDpair = 2π · 8.8 kHz,
corresponding to an interproton distance ofrpair = 0.19 nm, is
determined with high accuracy. However, being dominated
the intramethyl couplings, the SQ MAS spectrum is not se
sitive enough to the perturbation arising from the OH proto
to allow the determination of the latter. In contrast to SQC
methyl TQCs are extremely sensitive to extramethyl couplin
in that they give rise to odd-order MAS sidebands in methyl T
spectra via the ERM mechanism. The experimental spectr
indeed shows such first-order sidebands (Fig. 33c), from the r
.

ative intensity of which an effective perturbation ofξ ≈ 0.14
can be determined. Note that, although the ERM sidebands are
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clearly present in the methyl spectrum, there is no evidence
a “mixed” (CH3 + H) TQC. This is also obvious from the fu
two-dimensional sideband pattern shown in Fig. 34c. Hence
determination of the four-spin topology requires DQ MAS sid
band patterns or, conversely speaking, TQ spectra allow effic
filtering of pure methyl signals.

Consider first the two-dimensional DQ subspectrum
Fig. 34a) at the first-order DQ MAS sideband of the full p
tern which is displayed in Fig. 34b. As has been describe
Section 3.4 for rotor-synchronized two-dimensional DQ sp
tra, the DQ peaks allow the different DQCs and the involv
spins to be identified, and from their signal intensities rela
dipolar couplings strengths can be estimated. The subspec
displayed in Fig. 34a, however, only provides qualitative
sight into the dipolar pair couplings, since it is cut out of t
full two-dimensional pattern instead of being integrated over
sidebands. For example, theAA peak is far too weak in Fig. 34a
because the methyl DQ pattern has an intense centerband,
in the case of a typical pair-like DQ pattern, the spectral int
sity is concentrated the first-order sidebands. As is expecte
the four-spin geometry depicted in Fig. 32b, the pure methyl
signal (AA ) is accompanied by the two cross peaks of the met
OH DQC (AB). Moreover, there are considerably weaker DQ
between methyl and residual aromatic protonsC andC′ as well
as very weak DQCs involving solely residual protonsA, C, and
C′. As a side aspect, it is interesting to note that the protonsC and
C′ only form mixedCC′ DQCs, but noCC orC′C′ DQCs. From
this feature, it can be concluded that the1H signalsC andC′

arise from neighboring protons which are attached to the s
benzene ring. The following discussions focus on the stron
DQ signals of the methyl coherenceAA and its perturbationAB.

The DQ spectrum displayed in Fig. 35 consists of the M
sideband patterns of two different DQCs, i.e., the pure me
DQC and the mixed methyl-OH DQC. Although the high sp
tral resolution inherent to the model sample allows the spe
to be recorded at the relatively low MAS frequency of 7 kH
intense DQ signals and MAS sideband patterns are also ob
able under high-speed MAS conditions when the DQ exc
tion time is extended by means of recoupling pulse sequen
Since, from the SQ and TQ MAS sideband patterns, the intr
ethyl coupling as well as the effective perturbation is alrea
known, the evaluation of the DQ MAS pattern can now foc
on the details of the four-spin geometry, i.e., the angleθ and the
precise distancerpert between the fourth spin and the center
the three methyl protons. In Fig. 36, the experimental spect
(Fig. 35) is compared to a series of simulated spectra for diffe
θ andrpert, showing the marked sensitivity of the pattern to t
geometrical parameters. Note that there are no ambiguitie
the parameter pair (θ ,rpert), because the angle and the distance
fect different lines of the pattern. The best agreement is achie
for rpert= 0.30· · ·0.32 nm andθ = 40· · ·50◦.

The resultrpert= (0.31± 0.02) nm andθ = 45◦ ± 5◦ agrees
◦
well with the valuesrpert≈ 0.33 nm andθ ≈ 44 obtained from

the X-ray structure analysis. Apart from the general difficul
Q COHERENCES 201
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FIG. 34. (a) Two-dimensional1H DQ spectrum of acetonitrile in hydro-
quinone, recorded under MAS at 10 kHz withτexc= 1

2τR. The subspectrum at
the first-order DQ MAS sideband is shown, which allows—analogously to
rotor-synchronized two-dimensional spectra—the different DQCs to be id
tified. (b) Full two-dimensional MAS sideband pattern of the DQ spectru
ty
displayed in (a). (c) Full two-dimensional MAS sideband pattern of the TQ
spectrum, recorded under MAS at 14 kHz withτexc= 1

2τR.
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FIG. 35. 1H DQ MAS sideband pattern of acetonitrile in hydroquinon
recorded under MAS at 7 kHz withτexc= 1

2τR. The pattern consists of the tw
subpatterns of the pure methyl DQC and the mixed methyl-OH DQC. Thes
schematically depicted below.

of precisely locating protons using X-ray techniques, the
tance determined by our NMR measurements deviates from
X-ray result according to what is expected when comparing b
methods, because they operate on entirely different time sc
and therefore depend on different averaging processes. Wh
scattering methods internuclear distances are averaged ac
ing to 〈r−1〉, the dipolar coupling depends on such distan
according to〈r−3〉. Consequently, with respect to vibration
processes, NMR methods detect a higher moment (54, 61). It is
well known, for example, that NMR yields the internuclear d
tance of C–H bonds by about 5% longer than X-ray or neut
scattering.

To conclude our NMR investigations of the four-spin mod
compound, Fig. 37 gives an overview of experimental DQ a
TQ MAS spectra recorded with excitation timesτexc = 1

2τR at
different MAS frequencies. These spectra are compared to
ulated patterns which are based on the four-spin system dep
in Fig. 32 withrpert= 0.31 nm andθ = 45◦. The experimenta
and simulated patterns agree perfectly, reflecting the four-
topology consistently, although a minor difference can be s
in Fig. 37c: The “mixed” (CH3+OH) signal is weaker in the
experiment than in the simulation. At this point, the limitatio
of the experimental approach become clear, since an ex
tion time of τexc = 1

2τR = 35µs is very short for the weak
dipolar coupling underlying the (CH3 + OH) DQC, resulting
in a considerable experimental error. Therefore, the experim
tal conditions have to be carefully chosen in accordance to
dipolar coupling range of interest, and the consistency of
results needs to be checked.

3.7. Slow Dynamics and MQ Exchange Spectra
In the previous sections, we have demonstrated that MQ M
sideband patterns can be used to measure the strengths
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FIG. 36. Comparison of the experimental1H DQ MAS spectrum of ace
tonitrile in hydroquinone (shaded in the background) with simulated spe
The experiment was performed under MAS at 7 kHz withτexc = 1

2τR. The
simulations are based on the four-spin geometry shown in Fig. 32, varyin
distancerpert about the result obtained from the SQ and TQ MAS spectra

AS

and
Figs. 33b and 33c), while the angleθ is determined solely from the DQ MAS
pattern.
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times as well as manageable data-set sizes, the exchange exper-
FAST MAS AND M

FIG. 37. Overview of experimental (left) and simulated (right) DQ a
TQ MAS spectra of acetonitrile in hydroquinone, recorded withτexc= 1

2τR at
different MAS frequencies: (a, b, c) DQ at 7, 10 and 14 kHz, and (d) TQ M
at 14 kHz. The simulations are based on the four-spin model system depic
Fig. 32 withrpert= 0.31 nm andθ = 45◦.

orientations of dipolar coupling tensors. This information c
be exploited not only to investigate the structure and geom
of spin systems, but also to elucidate processes of slow m
ular dynamics. In the following, we will briefly introduce th
principal design of such experiments as well as the proce
for evaluating the resulting sideband patterns (99).

In the context of NMR, the distinction between fast a
slow dynamics depends on the strength of the respective d
lar coupling, meaning that processes on time scales faster
τ ≤ 10−5 s are considered fast, while motions on time scale
the order ofτ ≥ 10−3 s are slow. Motions on time scales 10−5 s≤
τ ≤ 10−3 s, in general, interfere with dipolar MQ MAS expe
ments and can hence not be described by the simple appro
tions valid in the fast and slow regimes, which assume eith
fast averaging process or a static system, respectively. In the
vious considerations, the case of a fast motion has already
discussed for the three protons of fast rotating methyl group
general, such processes can simply be taken into account b
placing the static dipolar interaction tensor with the motiona

averaged one.
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In order to investigate slow motions by NMR, a wealth of s
called exchange experiments have been designed during the
decades (95), which are, in principle, all based on the same e
perimental scheme: During two evolution periods, a spin evolv
under an anisotropic interaction, with the tensor orientation b
ing probed by the nuclear resonance frequency each time. Th
two periods are separated by a “mixing period,” during whic
the slow molecular motion of interest is allowed to occur. In th
way, the orientation of the interaction tensor before and after
motional process is spectrally correlated.

For this purpose, in standard applications, the anisotropie
CSA and quadrupolar tensors are routinely used, in most ca
detecting13C and2H resonances, respectively. From the fo
mal analogy of first-order quadrupolar interactions and dipo
couplings, it is clear that the dipolar tensors of spin pairs,
well as that of fast rotating methyl groups, can serve as pro
for molecular orientations in the same way, provided that a
ditional dipolar couplings of the spins of interest to neighbo
ing spins are sufficiently reduced. Due to the reliance on t
condition, the dipolar interaction has to date not been wide
exploited for investigations of slow molecular motions. How
ever, based on the improved dipolar decoupling conditions
forded by fast MAS techniques, our theoretical consideratio
of dense dipolar-coupled networks have revealed the domin
role of two-spin correlations. Therefore, in the presence of f
MAS, the dipolar spin-pair approach opens up the possibil
for exchange experiments which use dipolar tensors as pro
for molecular reorientations.

3.7.1. Scheme of DQ–DQ MAS Exchange Experiments

In dipolar MQ MAS experiments, the MAS sideband patter
generated by the rotor encoding of the MQ reconversion per
(RRE mechanism, see Section 3.5.1), allows the determina
of dipolar coupling strengths in principle without requiring an
spectral evolution period. Consequently, instead of using nucl
resonance frequencies, the RRE sideband patterns can ser
a sensor for coupling strengths and, in this way, for tensor o
entations. Hence, two such RRE patterns can be correlated
catenating two standard MQ MAS experiments and introdu
ing a mixing time in between. Thus, the extension of MQ MA
experiments to MQ–MQ MAS exchange experiments is ve
straightforward, and the resulting experimental scheme is
picted in Fig. 38. Note that, due to the fundamental role of ro
modulations in this experimental approach, each of the two co
bined MQ experiments must start with the same initial phase
the rotor. Experimentally, this is accomplished by triggering t
first and the second MQ excitation pulse train by the rotor sign

By introducing a mixing period, during which the slow
motional process of interest is allowed to occur, between t
“standard” MQ MAS experiments, the experiment becom
three-dimensional. To maintain reasonably short experim
iment can be performed in a reduced three-dimensional version
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FIG. 38. Schematic representation of a dipolar MQ–MQ MAS exchan
experiment.

by incrementingt1 and t2 synchronously. In the following, we
will focus on this two-dimensional type of DQ–DQ exchan
experiment.

3.7.2. MAS Sideband Patterns of DQ–DQ
Exchange Experiments

In a standard two-dimensional DQ MAS spectrum of
dipolar-coupled spin pair (i j ), the RRE mechanism generat
sidebands by modulating the time signal according to (
Section 3.5.1)

S(i j )
DQ(t) ∝ sinÄexc · sinÄrec, [124]

whereÄexc= ÄD(0, τexc) andÄrec = ÄD(τexc+ t1, 2τexc+ t1).
Sinceτexc is an integer number of rotor periodsτR, the integrated
spatial parts of the dipolar coupling,Äexc andÄrec, differ only
by thet1-shift of the integration limits, which corresponds to
difference ofωRt1 between the excitation and reconversion ro
phases. Catenating two DQ MAS experiments according to
scheme of Fig. 38 results in an additional rotor modulation
the observed time signal by the same factors as in Eq. [1
which can be formally written as a simple multiplication of t
form

S(i j )
DQ−DQ(t) ∝ sinÄ(1)

exc · sinÄ(1)
rec︸ ︷︷ ︸

first DQ exp.

· sinÄ(2)
exc · sinÄ(2)

rec︸ ︷︷ ︸
second DQ exp.

, [125]

whereÄ(1,2)
exc = ÄD(0, τexc) andÄ(1,2)

rec = ÄD(τexc+ t, 2τexc+ t)
and t = t1= t2 because of the reduced three-dimensional fo
of the experiment. Note the absence of any dipolar evolut
because the system under consideration is an isolated spin
whose DQC does not evolve under the mediating dipolar c
pling. The superscripts 1 and 2 indicate that the spatial par
the dipolar interaction before and after the mixing time mig
differ as a result of a molecular motion occurring during t
mixing period.

In the presence of a strong static magnetic fieldB0, the
strengthD(i j ) of a dipolar coupling depends on the orientation

(i j ) 2
the internuclear vectorri j according toD ∝ (3 cos θi j − 1),
whereθi j denotes the angle betweenri j andB0. Consequently,
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when the orientation of the dipolar coupling tensor has chan
from θ

(1)
i j to θ (2)

i j during the mixing period, the integrated spati
partsÄ(1)

exc, Ä
(1)
rec, andÄ(2)

exc, Ä
(2)
rec contain the factors (3 cos2 θ

(1)
i j −

1) and (3 cos2 θ (2)
i j −1), respectively. Therefore, the rotor modu

lation (see Eq. [125]) and the resulting sideband pattern dep
on the difference1θ = θ

(2)
i j − θ (1)

i j between the final and the
initial orientation of the internuclear vectorri j . Note that, un-
der MAS conditions, this1θ dependence splits into a twofold
(1β,1γ ) dependence, because then the coordinate transfor
tion needs to be carried out first from the principal axes syst
into the rotor-fixed frame, and second from the rotor-fixed fram
into the laboratory frame (see Eq. [27] in Section 2.3). The reo
entation process, however, can still be completely character
by a single angle1θ .

In order to be able to detect the difference1θ by the DQ–
DQ MAS sideband pattern, the RRE sideband pattern of e
individual DQ experiment must allow the determination of th
underlying pair-coupling strength, which means that it must co
sist of at least first- and third-order sidebands, correspondin
D(i j )τexc/2π > 0.5. The following discussion of DQ–DQ MAS
sideband patterns and their evaluation will be based, as an
ample, on a dipolar pair coupling ofD(i j ) = 2π · 8 kHz, which
is, for DQ excitation and reconversion, subject to a back-to-ba
recoupling pulse sequence of durationτexc = τrec = τR, while
MAS is applied at 8 kHz, providingD(i j )τexc/2π = 1.

Figure 39a shows the MAS sideband patterns obtainable
such a DQ–DQ exchange experiment. The patterns consis

FIG. 39. (a) MAS sideband patterns of DQ–DQ exchange experiments w
D(i j )τexc/2π = 1. The pattern depends characteristically on the angle of the

orientation occurring during the mixing time. (b) Pattern of the same experiments
as in (a), but with the time signals being divided by the time signal for1θ = 0.
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even-ordersidebands only and clearly depend on the chang
the angleθ which is due to a molecular reorientation proce
during the mixing time. Hence, the pattern allows the “jum
angle”1θ to be determined within the range from 0◦ to 90◦.
However, in practice, not only the angle of the reorientat
but also the fraction of molecules which undergo this motio
process needs to be determined. As a very simple appro
the observed time signal can be divided by the signal expe
for 1θ = 0. In this way, the signal of all spin pairs, which a
oriented at the same angleθ before and after the mixing time
is transferred completely to the centerband, while the pres
of sidebands indicates a motional process involving1θ 6= 0.
The MAS sideband patterns resulting from this procedure
displayed in Fig. 39b.

Thus, after this analytical procedure, the whole pattern c
sists of two parts: first, a sideband pattern, from which the “ju
angle”1θ can be determined and, second, an additional co
bution to the centerband, whose intensity relative to the sideb
pattern reflects the ratio of spin pairs with1θ 6= 0 and1θ = 0.
The latter case means either that the spin pair has remained
initial orientation throughout the experiment or that, after a fi
jump, it has reversed into its initial orientation by a subsequ
second jump. In this context, note that the angular depend
of Äexc andÄrec according to (effectively) sin 21θ restricts
the range of sensitivity to1θ = 0◦ . . .90◦. Figure 40 shows the
dependence of the centerband and sideband intensities o
jump angle1θ . Obviously, the intensity distribution allow
the jump angle to be identified unambiguously, and the ac
racy expected for experimental determinations can be estim
to be about±5◦. An important feature of the DQ–DQ exchan
method is that the sensitivity of the experiment can be increa
by increasing the excitation timeτexcand henceD(i j )τexc. In this
way, more sidebands are observable over a wider spectral ra

The evaluation of the sideband patterns of DQ–DQ excha
spectra is illustrated in Fig. 41, using a spin-pair model sam
with well-known motional properties as an example: The exp
imental pattern, displayed in Fig. 41c, has been recorded on13C–
13C spin pairs in crystalline polyethylene (PE), whose cha
contain 4% of such double-labeled pairs. The homonuclear d
lar coupling between these two carbon atoms is approxima
D(i j )= 2π · 2 kHz, so that the case ofD(i j )τexc/2π = 1 dis-
cussed above can be achieved by applying MAS at 8 kHz
usingτexc= 4τR for the excitation and reconversion of the13C
DQCs. Furthermore, the PE chains are known to undergo
room temperature, a slow 180◦ jump motion, which results in a
reorientation of the carbon pairs along the chain of1θ ≈ 112◦

(59). Note that, in the DQ–DQ exchange experiment, this
gle will be detected as a reorientation of1θ ≈ 68◦. The 13C
DQ–DQ MAS experiment is carried out analogously to the1H
case. In addition,13C magnetization is enhanced by a preced
Hartmann–Hahn cross-polarization (53) from protons to car-
bons, and heteronuclear dipolar decoupling is accomplishe

applying a broadband RF field to the protons throughout
experiment except for the mixing time.
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FIG. 40. Intensity of the centerband and the second- and fourth-order s
bands of the DQ–DQ MAS sideband patterns shown in Fig. 39b. In the inse
reorientation process giving rise to1θ = θ (2)

i j − θ (1)
i j is depicted schematically.

The MAS sideband pattern of the13C DQ–DQ exchange
experiment (see Fig. 41c) has been obtained for a mix
time of 300 ms at room temperature and, subsequently
dividing the experimental time signal by the theoretical tim
signal for1θ = 0. Obviously, the experimental pattern agre
well with a calculated pattern (note that the experiment yie
even the weak negative sidebands of eighth order), consi
of two contributions: first, a sideband pattern for a 70◦ ± 5◦

reorientation and, second, additional centerband intensit
the same relative weight. Hence, the experiment yields
expected jump angle. Furthermore, the 1 : 1 ratio of the
contributions means that the motional process has, at a m
time of 300 ms, already reached its equilibrium stage, i.e.
equal distribution of forward and forward–backward jum
This observation is again in agreement with the chain ju
dynamics, as have been determined by Huet al. (59). A full
investigation of the jump dynamics by means of DQ–DQ MA
exchange spectroscopy is given in (99).

In conclusion, the extension of the DQ MAS method to
exchange experiment as well as the evaluation of the obse
DQ–DQ MAS sideband patterns is straightforward. Such D
DQ exchange patterns combine information about both the a
and the rate of the slow molecular reorientations. Furtherm
the experiment allows different resonance lines and sideb
patterns to be resolved in the spectrum. In this way, differ
spin pairs can be observed at the same time, so that the m
does not rely on site-specific spin labels and is therefore ap
cable to multiply labeled samples or1H systems. In general, th
combination of multidimensional NMR techniques (see, e
(95) or (31), Chap. 6) with MQ MAS methods appears to be
thepromising approach for future methodological developments in
solid-state NMR.
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FIG. 41. Decomposition of the MAS signal pattern of a DQ–DQ exchange experiment into (a) the spinning sidebands, from which the angle of the reo
can be determined, and (b) the additional centerband intensity, from the relative weight of which the rate of the reorientational process can be evaated. (c)
Experimental sideband pattern of a13C–13C DQ–DQ exchange experiment performed on13C–13C pairs in crystalline polyethylene, whose chains have be

enriched with 4% of such13C–13C pairs. The excitation time wasτexc= 4τR with MAS being applied at 8 kHz, resulting inD(i j )τexc/2π = 1. The temperature
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was 298 K, and the mixing time was set to 300 ms.

4. APPLICATIONS

In this Section, we will give an overview of the investig
tions carried out to date applying1H MQ MAS spectroscopy in
the solid state. Following methodological work, the main foc
of 1H MQ MAS research has been on structural investigati
of supramolecular structures, in particular on hydrogen bo
since the combined information of chemical shifts and di
lar coupling strengths accessible by1H DQ NMR is perfectly
suited to probing such noncovalent interproton interactions
addition to this field of interest, the resolution enhancemen
forded by fast MAS techniques allows1H nuclei to be used a
probes for vicinalπ -electron systems and, in this way, allow
unexpectedly far reaching structural conclusions to be dr
for extended aromatic molecules. Although such “ring-curre
effects on1H resonances are well known in NMR (113), the
poor spectral resolution prevented them from being exploite
the solid state. Combining the applications to hydrogen bo
andπ -electron systems,1H MQ MAS spectroscopy commend
itself as a versatile tool for the elucidation of two interactio
primarily responsible for the induction of supramolecular ord

Apart from such structural information obtained on basica
rigid systems,1H MQ MAS methods, i.e., MAS sideband pa
terns and DQ buildup curves, provide detailed and quantita
insight into molecular dynamics, in particular for partially o
dered systems. In this way, molecular motions as well as c
dynamics have been analyzed in liquid-crystalline phases
polymer melts, respectively.

4.1. Hydrogen Bonds

Multiple hydrogen bonds are particularly well suited to1H
MQ MAS NMR investigations, since in general they combin
pronounced low-field chemical shift of the resonance frequ
cies with spatial proximities of protons. The1H chemical shifts

of hydrogen-bonded protons make the resonance lines not
relatively easy to resolve under MAS conditions, but they a
-
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indicate the strength of the hydrogen bond, in which the resp
tive proton is involved (52, 10). Furthermore, based on the spe
tral resolution, the strengths of the dipolar couplings betw
distinct hydrogen-bonded protons can be measured separ
by DQ MAS methods. In this way, a wealth of structural i
formation is accessible from unaltered as-synthesized sam
in particular, there is no reliance on isotopic labeling, e.g.,
2H nuclei. The latter are, though twice as heavy as protons
inevitable prerequisite for neutron scattering approaches.

4.1.1. Pairs of Hydrogen-Bonded Protons

One of the first samples used for demonstrating the appro
of 1H DQ MAS spectroscopy was malonic acid (46), because its
two1H resonance lines are already well resolved under mode
MAS, and each of its two proton species, i.e., aliphatic CH2 and
acidic COOH, form dipolar-coupled homonuclear spin pa
with the aliphatic proton pair being inherent to the molecu
CH2 unit and the acidic proton pair being due to the dime
arrangement of the carboxylic acid groups (see Fig. 42a). He
the pairs are part of either a covalent or a noncovalent struct
motif. The crystal structure of malonic acid reveals that b
proton pairs are separated from each other to such an e
that interfering effects of interpair couplings are, though n
negligible, considerably smaller than the dominating intrap
couplings. Hence, under MAS, the proton pairs can be w
decoupled from each other, and in this respect a spin-pair m
character prevails in malonic acid.

In Fig. 42b, the static1H one-pulse spectrum of malonic ac
is compared to the spectrum obtained under MAS at 13 k
demonstrating the resolution enhancement afforded by M
The MAS sideband patterns of both proton species are
clearly resolved and can be evaluated separately, yield
homonuclear dipolar coupling strengths ofDCH2 = 2π · 20 kHz
andDCOOH= 2π · 10 kHz, respectively, in the spin-pair appro
only
lso
imation. These couplings correspond to interproton distances
of rCH2 = 0.18 nm andrCOOH= 0.23 nm. From the SQ MAS
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FIG. 42. (a) Dimeric arrangement of the carboxylic acid groups in the cr
tal structure of malonic acid. The interproton distances obtained from1H SQ
and DQ MAS spectra are also shown. (b)1H one-pulse spectra of malonic ac
under static conditions and under MAS at 13 kHz. (c)1H DQ MAS spectrum of
malonic acid from Ref. (46), recorded forτexc≈ 35µs under MAS at 13 kHz
at a1H Larmor frequency of 500 MHz. The subspectrum at the first-order M
sideband in the DQ dimension is displayed.

patterns, however, it can still be argued that there is, apart f
the expected pair couplings, an additional contribution fr
“interpair” couplings, i.e., from pairs consisting of an alipha
and an acidic proton. These interactions can be unambiguo
identified in the DQ MAS spectrum, which is shown in Fig. 42
Although the spectrum is clearly dominated by the two pe
on the diagonal, indicating pure aliphatic and acidic DQ
respectively, there is a weak symmetric cross peak du
“mixed” DQCs. Since, in the DQ spectrum, the signals
spectrally resolved according to the spin species involved in
underlying dipolar couplings, the respective coupling streng
can be evaluated from the DQ MAS sideband pattern separ
and hence to a higher accuracy than from the SQ M
pattern (46).

Concerning the applicability of1H DQ MAS spectroscopy for
the elucidation of hydrogen-bonding schemes, it is clear from
simple case of malonic acid that a purely acidic1H DQ signal
arising from “noncovalent” acidic proton pairs allows spat
proximities of these protons to be straightforwardly identifi
which means that in most cases the DQ signal can serve
simple and reliable proof for the existence of hydrogen-bon
acid dimers.

4.1.2. Arrays of Multiple Hydrogen Bonds

After considering the double hydrogen bonds present in
boxylic acid dimers, we now turn to investigations of more e
tended arrays of hydrogen bonds. Such multiple hydrogen b
play an increasingly important role in the design of supramo
ular architectures (68) and, hence, there is increasing dema

for a technique elucidating the structure of such noncovale
bonds and their thermal or dynamical properties in solid-sta
Q COHERENCES 207
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samples. As an example, we briefly present the basic res
obtained for systems based on ureido-pyrimidinone moieti
which are capable of forming a quadruple hydrogen bond.
the group of Meijer, these units have been successfully used
synthesize supramolecular polymers (102). Figure 43 shows the
chemical structures of the ureido-pyrimidinone moieties and t
quadruple hydrogen bonds of the compounds discussed in
section, i.e., the monomers2and the polymers3. Due to the tau-
tomerism of the structure, both compounds contain the ureid
pyrimidinone moiety either in a keto or enol form, correspondin
to a 4[1H]-pyrimidinone or a pyrimidin-4-ol six ring, respec
tively. Using the labels2 and3 for the monomer and polymer,
respectively, the keto and the enol tautomer are distinguished
the lettersa andb following the number.

From the1H one-pulse spectra of compounds2a and 2b,
recorded under MAS at 30 kHz at a1H Larmor frequency of
700 MHz (Fig. 44), it is clear that the spectral resolution achie
able at such high MAS and Larmor frequencies allows all re
onance lines of the protons involved in hydrogen bonds to
clearly identified: Ha, Hb, and Hc, while Hd is a “free” aromatic
proton. It is even possible to spot slight shifts of the lines betwe

FIG. 43. Tautomeric structures of the ureido-pyrimidinone moiety, whic
is capable of forming arrays of four hydrogen bonds: free form1, hydrogen-
bonded form2 and supramolecular polymer3 consisting of monomers with an

nt
te
ureido-pyrimidinone moiety on either side of a short linear aliphatic chain. The
lettersa andb denote the keto and the enol tautomer, respectively.
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FIG. 44. 1H one-pulse spectra of the compounds2a (keto) and2b (enol),
recorded under MAS at 30 kHz at a1H Larmor frequency of 700 MHz.

the two tautomers, as is known from solution-state NMR sp
tra (11). However, even such detailed SQ spectra do not prov
insight into the actual arrangement of the hydrogen bonds.

Information on the hydrogen bonds can be straightforwar
obtained from the signals in two-dimensional1H DQ spectra,
which allow spatial proximities between proton species to
detected. Such DQ spectra, recorded in a rotor-synchron
fashion (i.e.,1t1 = τR), are shown in Fig. 45 for both tautomer
of compound2. The arrangement of the four hydrogen bonds
unambiguously reflected in the DQ peak pattern in the NH reg
of the two-dimensional spectrum: The Hc–Hb–Hb–Hc sequence
of the protons in the quadruple hydrogen bond of the keto fo
gives rise to a clear Hb–Hc cross peak and an Hb–Hb diagonal
peak, which is not resolved from the adjacent cross peak. Th
“keto-type” DQ signals are marked by the letterk in Fig. 45a. For
the enol form with an Ha–Hb–Hb–Ha sequence in the quadrupl
hydrogen bond, the peak pattern changes characteristically:
Hb–Hc cross peak is replaced by an Ha–Hb cross peak, while the
Hb–Hb diagonal peak remains. These “enol-type” DQ sign
are well resolved and marked by the lettere in Fig. 45b.

In addition to the information about the hydrogen-bondi
scheme, the DQ spectra also contain information about all o
spatial proton–proton proximities. A noteworthy feature is t
presence and the absence of the Hd–Hd diagonal peak in the spec
trum of the keto and the enol form, respectively. The prese
of an intense Hd–Hd diagonal peak, marked by the letterp in
Fig. 45a, cannot be explained in terms of an intramolecular c
pling. Rather, it indicates that, in the keto form, the packing
molecules gives rise to a short intermolecular distance betw
two aromatic Hd protons, while in the enol form the packing i
different, with the aromatic Hd protons being spatially separate
from each other.

The fact that the hydrogen-bonding scheme is so clearly
flected in the DQ signals opens up the possibility of follow
ing, in the polymer sample3, the tautomeric rearrangement o

the ureido-pyrimidinone moiety, which occurs upon heating th
polymer3a. It turns out that the transition3a→ 3b (schemat-
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ically represented in Fig. 46) is irreversible in the solid sta
meaning that the process is of kinetic rather than thermo
namic nature. Although such solid-state investigations can
ternatively be carried out by IR spectroscopy, the informat

FIG. 45. 1H DQ spectra of the compounds2a(a) and2b (b), recorded with a
DQ excitation time ofτexc= τR under MAS at 30 kHz at a1H Larmor frequency
of 700 MHz. The peaks of interest are assigned to the protons of the struct
with the lettersk, e, andp denoting signals which identify theketo or theenol
tautomer or intermolecularpacking effects, respectively. The cross peaks at

ealiphatic SQ resonance frequency are obscured by baseline distortions due to

the intense aliphatic diagonal peak.
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FIG. 46. Tautomeric rearrangement of the ureido-pyrimidinone moiet
observed for the supramolecular polymer, i.e.,3a→3b, upon heating. (a) Molec-
ular structures of the two tautomeric forms. (b)1H DQ MAS spectra with the
characteristic signals of the pure keto and enol state at the start and the end
transition. (c) Gradual change of the tautomer concentrations with increa
temperature, as determined from1H DQ signal intensities.

obtainable by IR is less detailed and not quantitative, whe
1H NMR measurements allow the determination of the kine
parameters.

In addition to the identification of the type of quadruple h
drogen bond, the actual interproton distances can be determ
from DQ MAS sideband patterns. In combination with ana
gous heteronuclear MQ MAS experiments (see Section 5)
geometry of the four hydrogen bonds can be completely

cidated for both tautomeric structures as well as for all th
derivatives.
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4.1.3. Identification of Geminate
and Chain-like Arrangements

In the previous section, the hydrogen bonds were used
the formation of a supramolecular polymer by linking bifunc
tional monomers in a noncovalent manner. Besides this, they
also play an important role in determining the physical prope
ties of “classical,” i.e., chemically linked, polymers by inducin
a supramolecular order to the polymer chains. As an exam
of such an effect, we will now briefly discuss the case of t
polybenzoxazines (60), which represent a new type of pheno
lic resins showing unusual properties potentially relevant f
high-performance applications. These interesting material pr
erties are likely to be due to the formation of complex hydroge
bonded superstructures (115). In this context, the investigation
of dimeric model systems by1H MQ MAS techniques revealed
that, in these materials, there are two distinct hydrogen-bond
schemes which strongly depend on the size of an alkyl s
stituent (97).

In the following, we will focus on two of these dimeric mod
els: a methyl-substituted and an ethyl-substituted dimer (hen
forth referred to as me-dimer and et-dimer, respectively), t
chemical structures of which are depicted in Fig. 47a (26).
Previous investigations by IR spectroscopy, X-ray scatterin
and molecular modeling suggested the presence of a com
network of inter- and intramolecular hydrogen bonds betwe
the dimers (27). For the me-dimer, it was possible to prepa
single crystals, whose analysis provided evidence for a ge
nate hydrogen-bonded arrangement of the dimers (see Fig. 4
involving two intra- and two intermolecular hydrogen bond
but without localizing the protons precisely. From the et-dime
no single crystals were available.

In Fig. 48a, the effect of MAS on the spectral resolution
the1H resonance lines is illustrated for the case of the et-dim
For MAS frequencies above 20 kHz the line at 13.2 ppm can

FIG. 47. (a) Dimeric model compounds for polybenzoxazines, with th
n-alkyl substituentR being eitherR = CH3 or R = CH2CH3. (b) Hydrogen-
eirbonded pair of two methyl-substituted dimers. (c) Schematic representation of
chemically cross-linked structures in the polybenzoxazines.
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FIG. 48. (a) 1H one-pulse MAS spectra of the et-dimer, recorded fo
series of MAS frequencies at a Larmor frequency of 500 MHz. The spectra
magnified according to the factor given on the right. (b, c)1H one-pulse spectra
recorded under MAS at 35 kHz. The assignment of the resonance lines fo
et-dimer (b) and the me-dimer (c) is as follows: NH (A), OH (B), aromatic CH
(C, C′), CH2 (D), and CH3 (E).

evaluated, while above 25 kHz the shoulder in the aliphatic sig
at 2.2 ppm appears, and at 35 kHz a weak signal at 5.4 ppm
comes visible. Note as well the sensitivity improvement rela
to the increase of the MAS frequency: The faster the spinn
the narrower the lines and the more the signal is concentr
in the centerband. Applying MAS at 35 kHz yields the spec
shown in Figs. 48b and 48c for the et-dimer and the me-dim
respectively. For both samples, signals in the aliphatic (D,E) and
the aromatic frequency range (C, C′) are clearly observed. Whe
comparing both spectra, the additional signals present in th
dimer, i.e.,D andC′, can be explained by the additional CH2

group in the et-dimer (D) and by packing effects (C′), the latter
being of similar origin as the splitting observed in th
acetonitrile-hydroquinone sample (see Fig. 33a). Furtherm
both spectra contain resonance lines labeledA andB, which are
shifted to high field for the me-dimer in comparison to the
dimer. This variation of the resonance frequencies suggest
assignment of these signals to hydrogen-bonded protons, w
structural arrangement differs slightly for the two dimers. Mo
over, the shift difference betweenA andB as well as the pro-
nounced low-field shift ofA > 10 ppm is not straightforwardly
compatible to the presence of two OH protons. The latter
servation rather supports the assumption that one OH pr
is involved in a N· · ·H · · ·O hydrogen bond, with the proto
developing partial NH character. For simplicity, the signalsA
andB are assigned to a “NH” and a “OH” proton, respective

To obtain a first idea of the dipolar coupling strengths ex
rienced by the individual proton species, the SQ MAS sideb

patterns could in principle be analyzed, as has been describe
Section 2.7. However, it should be kept in mind that SQ spe
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a
are

the

nal
be-
ed
g,
ted
ra
er,

et-

e
re,

t-
the
ose

e-

b-
ton

y.
e-
nd

tra consist of spin-specific rather than pair-specific signals a
hence,all dipolar couplings acting on a single proton contribu
to its MAS sideband pattern. Moreover, the spectral resolut
achievable in the sidebands is usually less than that in the c
terband, because residual line broadening affects the sideb
increasingly with their order. The latter problem is illustrated
Fig. 49 by the1H one-pulse spectrum of the et-dimer, record
under MAS at 35 kHz. The lines in the sidebands are less
solved and, even more importantly, their intensity is so poor
such high MAS frequencies that there is no hope for a qua
tative evaluation. In fact, the clear asymmetry between the t
first-order sidebands means that MAS has already reduced
dipolar interactions so efficiently that besides the residual dipo
interactions other mechanisms, e.g.,B1 inhomogeneities, con-
tribute appreciably.

Therefore, two-dimensional DQ MAS spectra are again
quired to shed light on the hydrogen-bonding arrangemen
should be noted that rotor-synchronized1H DQ spectra can
usually be recorded in less than 1 or 2 h. Hence, such spe
provide fast access to detailed information, without requiri
sophisticated setup procedures or long experiment times.
the two dimers, such DQ spectra are shown in Figs. 50a
50b. At first sight, the two spectra, being dominated by alipha
and aromatic1H signals, are very similar. However, the DQC
involving the aliphatic and aromatic protonsC, C′, D, andE
are irrelevant for the determination of the hydrogen-bondi
schemes and, hence, will not be further considered. The o
exception is the purely aromatic diagonal peakCC. Together
with the peaks involving NH and OH protonsA and B, the
relative intensities of these peaks reveal characteristic dif
ences between the me- and the et-dimer:

• For both dimers, the NH–OH cross peakAB indicates the
presence of a N· · ·H · · ·O · · ·H · · ·O hydrogen bond. In addi-
tion, the et-dimer exhibits an intense cross peakAC, evidencing
a spatial proximity between NH and aromatic protons.
d in
c-

FIG. 49. 1H one-pulse spectrum of the ethyl dimer, recorded under MAS at
35 kHz. On top, the centerband and the first-order MAS sidebands are magnified.
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1
FIG. 50. Two-dimensional H DQ spectra of the me-dimer (a) and the et-dimer (b), recorded at a Larmor frequency of 500 MHz with a DQ excitation time of
τexc= τR under MAS at 35 kHz. The arrows indicate the differences between both spectra, which are crucial for the distinction of the hydrogen-bonding schemes.
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• For the et-dimer, the OH protons are involved in a stro
DQC (BD) with CH2 protons, which is absent for the me-dime
• The diagonal peakCC in the spectrum of the me-dime

which cannot be due to aintramolecular proximity, but rather in
dicates a “back-to-back” packing arrangement of the molecu
is absent in the spectrum of the et-dimer.
• The diagonal peakBB of two OH protons is weak in the

spectrum of the me-dimer, but is virtually absent in the spect
of the et-dimer, even though it should be easier to resolve it t
because of its low-field shift.

For both dimers, theAB signal provides a plausible explan
tion for the presence of NH-type protons: In the course of the
mation of a double hydrogen bond, one of the two OH protons
velops partial NH character, i.e., in a schematical representa
N+H−O+H−O→ N · · ·H · · ·O · · ·H · · ·O. Turning to the
obvious differences between both spectra, the absence an
presence of anAC signal for the me- and et-dimer, respective
strongly suggest that, apart from the N· · ·H · · ·O · · ·H · · ·O
motif, the overall hydrogen-bonding schemes are different
the two dimers. While the structural implications from the D
spectrum of the me-dimer agree with a geminate hydrogen b
ing of the dimers, the proximity between a NH protonA and an
aromatic protonC in the case of the et-dimer is not at all compa
ble with this arrangement. In fact, in order to make the struc
of the et-dimer correspond to its DQ spectrum, the gemin
hydrogen-bonding scheme needs to be modified in the foll
ing way: Starting from the conformation of the methyl dim

depicted in Fig. 47b, one of the phenyl substituents attached
the central (–CH2–N(C2H5)–CH2–) bridge is rotated such tha
g
r.
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an aromatic proton takes the position occupied by the OH pro
before. After this conformational change, the “new” DQ sign
AC andBD as well as the unalteredAB signal can be explained
because, by this rotation, the proximity between the arom
and the NH protons as well as the proximity between the C2

and OH protons is achieved, while the N· · ·H · · ·O · · ·H · · ·O
bridge is kept. In Fig. 51, the proposed structure of the et-dim
is compared to that of the me-dimer.

In conclusion, replacing the methyl by an ethyl substitu
gives rise to a conformational change of the dimer, which s
sequently induces the change of the hydrogen-bonding sch
from a geminate to a chain-like supramolecular arrangemen
fact, it is rewarding that recently such a chain-like structure
indeed been identified also by an X-ray structure analysis of
propyl derivative, confirming the structure previously propos
solely on the basis of the1H DQ MAS results (97). In addition to
this principal result, a closer inspection of the DQ spectrum
the me-dimer reveals the presence of a weakAC signal, indicat-
ing the coexistence of a majority of hydrogen-bonded pairs w
a minority of hydrogen-bonded chains of dimers. With respec
the identification of such minority conformations, the DQ NM
method is superior to scattering methods, because the form
applicable to powdered as-synthesized samples, while the l
require single crystals, which are, as a result of the prepara
procedure, free of structural impurities.

4.1.4. Thermodynamics of Hydrogen-Bonding Processes

1
to
t

In the previous sections, we demonstrated howH DQ spec-
troscopy can, in a straightforward and qualitative manner, be
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FIG. 51. Comparison of the schematic hydrogen-bonded structures o
me-dimer (a) and the et-dimer (b), i.e., geminate and chain-like, respective
derived from1H DQ spectra.

used to identify multiple hydrogen-bonds and the details of th
bonding arrangement. We will now turn to quantitative resu
about the structure as well as the thermodynamics and kine
of hydrogen bonds, obtained by1H SQ and DQ MAS tech-
niques (20). The sample, which will serve as an example in t
following discussion, is a hexabenzocoronene (HBC) der
tive, namely 2,5,8,11,14,17-hexa[10-carboxydecyl]hexa-peri-
hexabenzocoronene, henceforth referred to as HBC-C10COOH,
whose structure is depicted in Fig. 52a. Aliphatic HBC deriv
tives represent a relatively new family of discotic aromatic me
gen, which have a number of favorable properties as comp
to the more established triphenylenes (55, 109). Due to the ex-
tendedπ -electron systems and favorableπ–π interactions, these
molecules are capable of forming columnar phases by stac
the disc-shaped cores. The solid-state structure as well as th
namics of the high-temperature liquid-crystalline (LC) phas
will be discussed in the following section. Here, we will co
sider the HBC-C10COOH derivative, where each of the six line

FIG. 52. (a) Chemical structure of HBC-C10COOH. (b) Equilibrium be-

tween the making and breaking of hydrogen-bonded carboxylic acid dimer
HBC-C10COOH.
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FIG. 53. 1H one-pulse spectrum of HBC-C10COOH, recorded under MAS
at 30 kHz at a Larmor frequency of 500 MHz.

alkyl chains is capped by a carboxylic acid group, and focus
its hydrogen-bonding properties (see Fig. 52b).

In the SQ MAS spectrum shown in Fig. 53, the1H reso-
nance line of the COOH protons is clearly resolved at 12 pp
The aliphatic protons give rise to an intense peak centere
1.5 ppm, while the signals of the aromatic protons are spr
over a range between 5 and 10 ppm, forming a long low-fi
shoulder of the aliphatic signal. This broad aromatic signa
well as the underlying phenomena will be discussed in de
in the following section. Concentrating on the COOH sign
it is not clear from the SQ spectrum if and to what exte
the carboxylic acid groups form hydrogen bonds. The tw
dimensional rotor-synchronized1H DQ spectrum (Fig. 54a)
gives the immediate answer to this question: The purely ac
diagonal peak provides evidence for the presence of hydro
bonded dimers of acid groups. The acidic–aliphatic cross p
is due to dipolar couplings between COOH and (ω − 1)–CH2

protons, while the aromatic and aliphatic diagonal peaks
dicate aromatic–aromatic and aliphatic–aliphatic dipolar c
plings, which are obvious from the structure of the molec
(see Fig. 52a).

Beyond the simple identification of a double hydrogen-bo
the MAS sideband pattern of the purely acidic DQ signal
lows the determination of the interproton distance within t
carboxylic acid dimer. Figure 55a shows the extracted colu
from a non-rotor-synchronized two-dimensional DQ spectr
at the SQ resonance frequency of the COOH protons a
ppm. The additional experimental peaks marked by aster
correspond to DQCs between the COOH and aliphatic prot
Based on a spin-pair model, the purely acidic MAS sideband
tern observed in the experiment agrees with that of two prot
with a homonuclear dipolar coupling ofDHH = 2π · 5.5 kHz,
corresponding to an interproton distance ofrHH = 0.28 nm
(calculated pattern shown in Fig. 55b).

Upon heating, HBC derivatives undergo a phase transi
from the solid low-temperature phase to a LC high-tempera
phase. While the following section will focus on the molecu
motions present in the LC phase, we briefly summarize here
s ininformation obtainable from1H spectroscopy about the kinetics
and thermodynamics of the making and breaking of hydrogen
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FIG. 54. Two-dimensional rotor-synchronized1H DQ spectra of HBC-
C10COOH, recorded with a DQ excitation time ofτexc = τR under MAS at
30 kHz at a Larmor frequency of 500 MHz: (a) solid phase atT = 322 K and
(b) liquid-crystalline phase atT = 438 K.

bonds. From the absence of a purely acidic DQ signal in
rotor-synchronized two-dimensional DQ spectrum recorded

the LC phase of HBC-C10COOH (Fig. 54b), it is clear that the
hydrogen bonds are broken on a time scale faster than tha
Q COHERENCES 213

the
for

the DQ experiment at such elevated temperatures. In additio
this, the presence of fast molecular motions is obvious from
considerable narrowing of the1H resonance lines, in particula
of the aromatic signal, as well as from the absence of any
cross peak.

The dynamic processes, which the hydrogen bonds und
upon heating, can be analyzed by means of1H resonance
frequencies and COOH signal intensities in1H one-pulse and
double-quantum-filtered (DQF) MAS spectra. A series of exp
imental SQ and DQF spectra, recorded at different temperatu
are shown in Figs. 56a and 56b, respectively. In the SQ spec
clear shift of the COOH peak to high field is observed for incre
ing temperatures. A closer inspection reveals that two shif
processes can be distinguished: a gradual shift from 12 to 10
for T = 324→ 419 K (plotted in Figs. 57a) and a jump from 1
to 9 ppm forT = 419→ 438 K. These observations can be inte
preted in terms of a chemical exchange process. The approa
based on the assumption that, in the LC phase atT ≥ 438 K, all
hydrogen bonds are initially broken, and the COOH resona
frequency at 9 ppm is that of free carboxylic acid groups. T
jump of the COOH signal occurring fromT = 419 toT = 438 K
hence corresponds to the difference in the1H resonance fre-
quencies observed for fast exchange process and the free
respectively. The fast exchange occurs between hydro
bonded and free COOH groups, with the resonance frequen
of the former and the latter being equal to that of the COO
protons in the SQ spectra atT = 324 K and T = 438 K,
respectively, i.e., 12 and 9 ppm. For decreasing temperatu
the exchange rate decreases and, in the SQ spectra, the tran
from fast exchange to slow exchange can be followed, pas

FIG. 55. (a) Extracted DQ column at the COOH resonance at 12 ppm fr
a two-dimensional1H DQ spectrum of HBC-C10COOH, recorded with a DQ
excitation time ofτexc= 3τR under MAS at 30 kHz at a Larmor frequency o
700 MHz. The signals marked by∗ correspond to DQCs between the COO
and aliphatic protons. (b) Calculated DQ MAS sideband pattern of a proton
t of
with DHH = 2π · 5.5 kHz, corresponding to a distance ofrHH = 0.28 nm, for
the experimental parameters in (a).
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FIG. 56. Series of1H MAS spectra of HBC-C10COOH for temperatures
T ≈ 320. . .440 K, recorded under MAS at 30 kHz at a Larmor frequency
500 MHz: (a) one-pulse spectra and (b) double-quantum-filtered (DQF) spe
applying a DQ excitation time ofτexc= 2τR.

the coalescence point at about 362 K, as is apparent from
observed linewidth change. At lower temperatures, the CO
resonance is split into a pair of resonance lines, a low-field
for the hydrogen-bonded and a high-field line for the free fo
with the latter being obscured by the aromatic1H signals.

Based on this chemical exchange approach, a quantit
analysis of the COOH resonance frequencies yields the equ
rium constantK for the making and breaking processes of
hydrogen bonds in HBC-C10COOH. The resultingK -values are
plotted in Fig. 57b, and the thermodynamics of the equilibri
are given by a reaction enthalpy1H = 45± 4 kJ/mol and a
reaction entropy1S= 113± 11 J K−1 mol−1 (20).

While the temperature dependence of the SQ spectra
lows the thermodynamics to be determined, the temperatur
pendence of the DQF signal intensities provides quantita
insight into the kinetics of the hydrogen-bonding process
HBC-C10COOH. From the1H DQF spectra shown in Fig. 56b
as well as from the DQ intensity values plotted in Fig. 57c
is clear that the purely acidic DQC vanishes for increasing t
peratures. In order to observe a DQ or DQF signal with m

imum amplitude, the respective dipolar coupling must pers
unchanged for the duration of the DQ experiment. Convers
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any dynamic process which destroys or modifies the underly
dipolar coupling during the DQ experiment cancels or redu
the DQ signal intensity accordingly. The time scale, on whi
a DQF experiment is sensitive to such processes, is there
given by the sum of the excitation and reconversion perio
i.e., 133µs for the spectra shown in Fig. 56b.

In the case of the hydrogen bonds investigated here, the
uation can be described by a simple two-state model where
reaction occurs between a hydrogen-bonded and a free s
Hence, the dipolar couplings change fromDHH = 2π · 5.5 to
0 kHz. Based on this model, the DQ signal intensity observ
in the spectra shown in Fig. 56b directly reflects the proba
ity that the lifetime of the hydrogen-bonded form is longer th
133µs. Taking the change in the equilibrium constant as wel
the general loss of NMR signal inherent to temperature incre
into account and assuming an exponential distribution of dim
lifetimes, we obtain the rate constantsk f for the breaking reac-
tion, which are plotted in Fig. 57d (20). An Arrhenius analysis
results in an activation energy ofEA = 89± 10 kJ/mol and an
Arrhenius parameter ofA = 4.2× 1016 s−1. Due to the time
scale of the DQ experiment, this approach is, in general, limi
to rate constants higher thank f ≈ 106 s−1.

In conclusion,1H MAS and in particular1H DQ MAS spec-
troscopy offer themselves as valuable and straightforwardly
plicable techniques for the investigation of hydrogen bonds w
respect to their structure as well as their dynamics in the s
state:

• Based on the1H chemical shift resolution provided by fas
MAS, the presence of DQ signal provides evidence for the
istence of hydrogen bonds.
• In the case of multiple hydrogen bonds, their arrangem

can be directly derived from the peak pattern in two-dimensio
DQ spectra.
• DQ MAS sideband patterns allow the accurate determi

tion of interproton distances.
• From the changes of1H chemical shifts as well as from

the variation of DQ signal intensities occurring upon tempe
ture changes, quantitative thermodynamic or kinetic informat
about the making and breaking processes can be obtained.

4.2. Packing of π-Electron Systems

The hydrogen-bonding properties of the particular HBC he
acid derivative discussed in the last section represent on
side aspect of the main features of HBC compounds, which
predominantly controlled by theπ–π interactions between the
extended aromatic cores of the molecules. In the following,
focus on these interactions and demonstrate how1H SQ and DQ
MAS approaches can, in general, be used to explore the pac
arrangement ofπ -electron systems in the solid state.

Using 1H instead of13C resonances for mappingπ -electron

ist

ely,
densities might appear a bit odd at first sight, but protons
have the undeniable advantage of combining high NMR signal
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FIG. 57. (a) The change of the chemical shift of the acidic1H resonance in HBC-C10COOH upon heating (spectra shown in Fig. 56a). (b) Thermodynam
constantK of the equilibrium between the making and the breaking reaction of COOH hydrogen bonds in HBC-C10COOH , as schematically depicted in Fig. 52b
(c) DQ signal intensity of the COOH signal in the1H DQF spectra shown in Fig. 56b. The crosses denote the experimental DQF data, while the circles indic

temperature dependence of the equilibrium together with the general loss in any NMR signal due to heating. (d) Kinetic rate constantk f of the breaking reaction
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of the hydrogen bonds in HBC-C10COOH, as evaluated from the DQF signa

sensitivity with a high chemical shift sensitivity to nearby ele
trons. The latter feature is due to the fact that, in NMR,
electrons surrounding the nucleus are responsible for mag
shielding effects, thereby determining the actual nuclear
onance frequency. Since hydrogen atoms themselves are
provided with a single electron, which is moreover well loc
ized in the chemical bond, external electrons have a major e
on1H chemical shifts. Although this phenomenon is well kno
in NMR (113) and routinely exploited in solution- or liquid-sta
applications, the lack of spectral resolution has prevented it f
being utilized in the solid state. However, fast MAS techniq
are now able to overcome this problem and to uncover the1H
chemical shift information, as will be shown, in this review, f
the example of the large aromatic core of alkyl-substituted H
derivatives (see Fig. 58).

The protons of interest are those directly attached to the
matic core. Due to the presence of the alkyl substituents, t
protons in the “bays” of the core form spin pairs which a
well separated from neighboring protons. This feature will

exploited in the following section for investigating the molec
ular dynamics in the solid and the LC phase by DQ MA
intensities.
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spectroscopy. Anticipating these investigations, we now c
sider hexa-(α-deuterododecyl)-hexa-peri-hexabenzocoronen
(structure2 in Fig. 58 (18)), which is henceforth referred
to as HBC-CαD

12 . In this sample, theα-CH2 positions were

FIG. 58. Chemical structure of the alkylated hexabenzocorone
(HBC) derivatives discussed in this section: hexa-n-dodecyl, 1; hexa-(α-

-
S
deuterododecyl),2; hexa-i -propyl,3; hexa-t-butyl,4; and di-ortho-t-butyl-tetra-
n-dodecyl,5.



io
t

A
ly

e
o
.

d

e
a

e
tu

k

o

n

o
e

t
n
i

it
h
a
a
in

Hz:

ude

so-
216 SCHNELL A

originally deuterated in order to carry out2H NMR investiga-
tions of the side chains (55, 13). With respect to the1H MAS
experiments discussed here, the deuterons provide addit
spatial separation and, in this way, dipolar decoupling for
bay proton pairs. However,1H MAS NMR is able to provide
the same information for the fully protonated hexa-n-dodecyl-
hexa-peri-hexabenzocoronene (structure1 in Fig. 58), which is
henceforth referred to as HBC-C12.

The fundamental feature of the solid-state1H resonances in
HBC derivatives becomes obvious from the one-pulse M
spectrum of HBC-CαD

12 , displayed in Fig. 59a: Instead of on
one, there are three aromatic1H resonances of equal inten
sity. The presence of a higher magnetic field, i.e., a Larm
frequency of 700 instead of 500 MHz, as well as the deut
tion of theα-CH2 positions helps with the spectral resolution
three lines, as can be seen from comparing the insets in Fig
as well as Figs. 59a and 59b, respectively. The splitting
the aromatic1H resonance cannot be due to an asymmetry of
molecule, because the six alkyl substituents are chemically i
tical and conserve the sixfold symmetry of the aromatic co
as is also proved by the presence of only one aromatic1H reso-
nance in the spectrum of a solution of HBC-CαD

12 in CDCl3 (see
Fig. 59d). In the LC phase of HBC-CαD

12 the aromatic resonanc
is considerably shifted to high field relative to its solution-st
position (see Fig. 59c), but no splitting is observed. Apparen
some molecular motion cancels the resonance splitting. Th
fore, the presence of three lines must be due to a struc
feature which is specific for the solid state, such as the pa
ing of the disc-shaped aromatic cores. An appropriate pac
could make the aromatic protons experience “ring-current”
fects of nearbyπ -electrons to different degrees, depending
the individual electronic environment.

In order to shed more light on the origin of the resonan
line splitting induced byπ -electrons, the pronounced spin-pa
character of the aromatic protons in HBC-CαD

12 strongly sug-
gests the recording of two-dimensional DQ spectra. In this w
proton species forming bay proton pairs can be easily ide
fied. Labeling the three aromatic lines withA, B and C, the
rotor-synchronized DQ spectrum (see Fig. 60a) clearly sh
that two types of bay proton pairs can be distinguished, on
which consists of proton speciesC only, while the other con-
sists ofA–B pairs. Note that this result is obvious from th
spectra of both the deuterated HBC-CαD

12 and the fully proto-
nated HBC-C12. In the latter case, as is expected, the aroma
aromatic and aliphatic–aliphatic DQ signals are accompa
by “mixed” aromatic-aliphatic signals because of the proxim
between aromatic andα-CH2 protons.

Considering the three aromatic DQ signals quantitatively,
clear that they are of about the same integrated intensity, w
means that the cross peakAB is twice as intense as the diagon
peakCC. To a first approximation, the intensity of the DQ sign
is proportional to the square of the underlying dipolar coupl

strength as well as to the number of contributing spins. R
lying on the self-evident assumption that the dipolar coupli
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FIG. 59. 1H one-pulse spectra, recorded at a Larmor frequency of 500 M
(a) solid phase of HBC-CαD

12 under MAS at 35 kHz, with the 700-MHz spectrum
in the inset for comparison. (b) Solid phase of HBC-C12 under MAS at 35 kHz.
(c) LC phase of HBC-CαD

12 under MAS at 35 kHz. (d) Solution of HBC-CαD
12 in

CDCl3, with the solvent signal being marked by∗.

strengths are equal for all bay proton pairs, we can concl
that there are twice as manyAB-type thanCC-type pairs. This
observation, together with the existence of anAB DQ cross
peak, allows the rejection of any suspicion that the three re

e-

ng
nances could be due to a coexistence of three different solid-state
phases of the material. It rather supports the assumption that the
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FIG. 60. Two-dimensional rotor-synchronized1H DQ spectra, recorded
with a DQ excitation time ofτexc = τR under MAS at 35 kHz at a Larmo
frequency of 500 MHz: (a) HBC-CαD

12 and (b) HBC-C12. The sample temperatur
was at 330 K, such that both samples were in their solid low-temperature ph

packing effect inducing the line splitting occurs on a molecu
nearest-neighbor level throughout the whole sample.

In fact, the1H NMR observations can be rationalized qu
straightforwardly by considering the packing arrangemen
unsubstituted HBC, whose crystal structure is known from
X-ray analysis (45). The planar HBC discs pack in columns, wi

their molecular plane being tilted relative to the columnar ax
In this way, the molecules of two neighboring columns form
Q COHERENCES 217

ses.
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herring-bone pattern, as depicted in Fig. 61a. Picking out a
gle molecule, this packing arrangement results in a displacem
of its two neighbor molecules such that the interaction of
π -electrons is optimized. This relative orientation of extend
planarπ -electron systems is well known from the carbon lay
in graphite. Focusing on the aromatic protons, the displacem
of the molecules means that three types of protons can be
tinguished with respect to the degree ofπ -electron density they
experience from the neighbor molecule (see Fig. 61b):A-type
protons lie neither above nor below theπ orbitals of an adjacen
layer and, therefore, correspond to the least shielded reson
(highest ppm).B- andC-type protons lie over or below an inne
and outer part, respectively, of an adjacent ring system and
thus expected to correspond to the medium and most shie
resonances, respectively.

Thus, proposing an analogous packing in the alkylated de
tive HBC-C12, the existence of three aromatic1H resonances a
well as the two types of bay proton pairs, including their n
merical ratio of 2 : 1, can be explained. Moreover, based on
oretical quantum-chemical approaches,1H chemical shift cal-
culations have recently shown (86, 87) that the packing of the
HBC cores described above is indeed the only relative or
tation which gives rise to the observed1H resonances and, i
particular, to the DQ peak pattern. Conversely, utilizing the s
sitivity of 1H resonances to nearbyπ -electron densities, a singl
1H DQ spectrum allows the unambiguous determination of
molecular packing in the solid phase of HBC-C12. Furthermore,
the collapse of the splitting of the aromatic1H resonances in the
high-temperature LC phase of HBC-C12 can now be rationalized
in terms of a molecular motion which averages the three dif
entπ -electron environments of the aromatic protons and res
in a meanπ -electron density which is then equally experienc
by all six protons. We will turn to a detailed discussion of t

FIG. 61. (a) Columnar packing and herring-bone arrangement of the d
shaped aromatic cores in the crystal structure of unsubstituted HBC (45). (b)
Packing arrangement of the aromatic HBC cores in a column: the ce
molecule (solid lines) with its neighbor molecules above (dashed) and b

is.
a
(dotted). The three aromatic1H resonances are assigned according to the spec-
tra obtained for HBC-CαD

12 and HBC-C12.
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motion present in the LC phase of HBC derivatives in the
lowing section.

Considering the other alkylated HBC derivatives, i.e., str
tures3 to 5 in Fig. 58, we will now briefly demonstrate th
the molecular packing of the HBC cores depends on the a
substituents and that the DQ peak pattern observed in r
synchronized1H DQ MAS spectra again provides detail
insight into the relative orientation of the aromatic discs (19).
Comparing Figs. 62a and 62b, it is clear that the hexa-i -propyl
derivative exhibits the same aromatic1H DQ peak pattern an
hence the same packing arrangement as HBC-CαD

12 or HBC-
C12 in the solid phase. For the hexa-t-butyl derivative, however
a considerably different aromatic DQ signal is observed
Fig. 62c), from which the existence of at least five distinct a
matic 1H resonances can be concluded (19). Here, the bulky
t-butyl substituents prevent the cores from being packed
column and, instead, hexa-t-butyl HBC forms “sandwiches
consisting of only two molecules, which crystallize in a no
columnar fashion. The1H DQ spectra support the relative o
entation of the cores in these sandwiches (19), as is proposed
by a preliminary X-ray analysis. Finally, considering the
ortho-t-butyl-tetra-n-dodecyl HBC, the DQ spectrum shows
DQ peak pattern which seems to be a mixture of HBC-like
nals plus an additional low-field diagonal peak. Without go
into details, these signals apparently indicate that the arom
cores of di-ortho-t-butyl-tetra-n-dodecyl HBC pack similarly to

FIG. 62. Aromatic1H DQ signals observed in rotor-synchronized1H DQ
MAS spectra of alkylated HBC derivatives: (a) hexa-(α-deuterododecyl),2; (b)
hexa-i -propyl, 3; (c) hexa-t-butyl, 4; and (d) di-ortho-t-butyl-tetra-n-dodecyl,

5. All spectra were recorded at a Larmor frequency of 500 MHz atT ≈ 330 K,
applying a DQ excitation time ofτexc= τR under MAS at 30 kHz.
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HBC and hexa-i -propyl HBC, with the two bulkyortho-t-butyl
groups separating one bay proton pair from adjacentπ -electron
systems such that no additional high-field shift is observed.

Apart from the aromatic1H resonances, the chemical shif
of the aliphatic signals can also serve as sensitive probes fo
proximity of aromatic rings. The basic effect of theπ -electrons
on the aliphatic chemical shifts is analogous to that on the a
matic signals, as is demonstrated in the1H DQ spectrum of HBC-
C12 (Fig. 60b) by the three aromatic–aliphatic cross peaks: T
aliphatic and aromatic SQ resonance frequencies are shifte
parallel, meaning that the aromatic and the aliphatic prot
nearby, i.e., theα-CH2 protons, experience the same shift effe
from adjacentπ -electrons. Moreover, in hexa-t-butyl HBC, for
example, at least four1H methyl resonances could be identifie
from the1H DQ spectrum and rationalized in terms of differe
degrees to which the methyl protons are subject to additio
shielding. In this way, the proposed sandwich-like packing
the molecules could be confirmed (19, 86).

Although, in this discussion, quite extendedπ -electron sys-
tems served as examples for demonstrating the feasibility
the versatility of using1H resonances as probes for aroma
systems, analogous chemical shift effects are also observe
small phenyl rings. In crystalline tyrosine·HCl, for example, the
two aromatic protons on either side of the phenyl ring show
shift difference of about 2 ppm because of different shield
effects, as becomes obvious in1H–13C correlation experiments
(92, 110).

4.3. Molecular Dynamics

While, in the previous section, we focused on the structu
information obtainable from1H spectra, we now turn to the in
vestigation of molecular dynamics and to a discussion of feas
1H MQ MAS approaches. In fact, when discussing the fun
mentals of1H MQ MAS spectroscopy in Section 3.3.2, we ha
already encountered a very simple case of molecular mot
i.e., the fast rotation of methyl groups. This type of oriente
fast, and well-defined motion can be easily investigated by1H
MQ MAS techniques, because it just requires the static dip
interaction tensor to be replaced by the motionally averaged
In the following we will consider, as an example for first app
cations, molecular dynamics in liquid-crystalline HBC deriv
tives which, though still resembling a simple kind of orient
motion, demonstrate the potential of solid-state1H MQ MAS
methods. Furthermore, nonoriented statistical motions can
be explored and characterized in terms of, e.g., residual o
parameters or inherent time scales, as will be shown for1H DQ
MAS investigations of a polymer melt, namely polybutadien

4.3.1. Molecular Motions in Liquid-Crystalline Phases

In the solid phases of HBC derivatives, the presence of m
1
tiple aromatic H resonances has been rationalized in terms

of the degree to which each proton experiences the effect of
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π -electrons of adjacent molecules. Hence, the occurrenc
this kind of line splitting has been identified as an intermole
ular effect resulting from the packing arrangement in the so
state. Moreover, it has already been observed that the splittin
the aromatic resonances collapses into a single line both u
heating into the LC phase and upon dissolving (see Figs.
and 59d). While, in the latter case, this observation is not a
surprising, because in a dilute solution the HBC molecules
well separated from each other, the presence of a single arom
line in the high-temperature LC phase deserves a more det
analysis. Although the aromatic1H resonance at 6.2 ppm (se
Fig. 59c) does not reflect any well-defined packing arrangem
it is still clearly shifted to high field, indicating residual “ring
current” effects from adjacent layers. An obvious explanat
for this feature would be the presence of a molecular mot
in the LC phase, which averages over the differentπ -electron
environments and results in a single average shift effect.

In order to investigate the underlying process of molecu
motion by1H MQ MAS approaches, the chemical structure
the HBC derivatives suggests the exploitation of the bay pro
e
DQ

pari

orre-
pairs. Under fast MAS conditions, in particular for the deuterated
compound HBC-CαD

12 , these proton pairs are effectively decou-

FIG. 63. 1H DQ MAS sideband patterns of HBC-CαD
12 . The1H Larmor frequency is 500 MHz. (a) Pattern at the aromatic1H SQ resonance at 7.9 ppm of th

solid phase atT = 330 K, recorded with a DQ excitation time ofτexc= 2τR = 57µs under MAS at 35 kHz. The asterisks mark “mixed” aromatic–aliphatic
signals. (b) Pattern at the aromatic1H SQ resonance at 6.2 ppm of the LC phase atT = 430 K, recorded with a DQ excitation time ofτexc= 2τR = 200µs under
MAS at 10 kHz. Note the absence of even-order sidebands or centerbands. On the right, calculated DQ MAS patterns of a spin pair are displayed for comson. The

molecules are assumed to be static, the coupling strength c
sponds to an interproton distance ofrHH = (0.200± 0.004) nm,
parameters of the calculations correspond to those of the experimental spe
in a) are also given.
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pled from surrounding protons, as is experimentally proved
the absence of any even-order sidebands in the DQ MAS s
band patterns (see Fig. 63). Consequently, these patterns
safely and straightforwardly be used to measure precisely
dipolar pair-coupling strengths and, in this way, the motio
reduction of the dipolar coupling occurring upon the transiti
into the LC phase.

In Fig. 63, DQ MAS sideband patterns at the aromatic1H SQ
resonances at 7.9 and 6.2 ppm of the solid and the LC ph
respectively, of HBC-CαD

12 are compared to each other (18). (At
all three aromatic1H resonances at 7.9, 6.6, and 5.4 ppm in
solid phase, the same pattern is observed.) In order to ob
a pattern corresponding toD(i j )τexc/2π ≈ 0.8 . . .1.2, excita-
tion timesτexc of 57 and 200µs have to be applied to the soli
and the LC phase, respectively, indicating that the underly
pair-coupling strengthsD(i j ) are considerably reduced in th
LC phase. By comparing the experimental patterns to spin-
calculations, the coupling strengths ofD(i j )

sol = 2π ·15.0 kHz and
D(i j )

LC = 2π ·6.0 kHz are determined to an accuracy of better th
±0.5 kHz. For the solid phase, where the aromatic cores of H
ctra. The resulting pair-coupling strengths (and the corresponding interproton distances
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which is in perfect agreement with the value expected fo
almost planar molecule as well as with the crystal structur
unsubstituted HBC (45).

For the high-temperature LC phase, the coupling streng
reduced by a factor of 0.4. It is self-evident that the interpro
distance does not change upon heating the sample from 3
430 K, and hence the reduction of the coupling must be du
motional averaging effects. Considering the disc-shaped s
ture of the HBC molecule, it is obvious that such molecules
likely to undergo in-plane rotations. In fact, such rotations
six-site jumps are, even at room temperature, well known
aromatic molecules with a sixfold symmetry, such as benz
coronene, and unsubstituted HBC. In the columnar packin
rangement of HBC-C12, the onset of this rotation is accompan
by a tilt of the aromatic cores such that their planes becom
thogonal to the columnar axis, which is, for stability reaso
identical to the rotation axis (22).

In general, a fast rotation about an axis which is ortho
nal to the orientation of the dipolar interaction vector redu
the dipolar coupling strength by a factor of 0.5. Hence, the
served reduction of 0.4 agrees well with this type of molec
motion, if, in addition to the fast rotation, a small out-of-pla
tumbling motion is assumed. Clearly, the columnar packing
sists in the LC phase, as is proved by the high-field shift of
aromatic resonance at 6.2 ppm (instead of about 9 ppm fo
lated molecules). It should be noted that, in the LC phase
aromatic chemical shift is not simply the average of the th
different chemical shifts in the solid phase. This implies that
relative position of the aromatic cores in the LC phase slig
differs from the solid-phase arrangement.

In this way,1H DQ MAS sideband patterns serve as a p
cise measure of dipolar coupling strengths, from which mo
ular motions can then be concluded. In the case of the H
derivatives,1H spectra do not only provide clear evidence
the presence of a LC phase, they also allow the persisten
the columnar packing as well as the underlying processe
molecular rotations to be identified (18, 19, 20). In contrast to
previous NMR investigations performed on this class of ma
als (69, 55), all the results presented here are directly obtain
from as-synthesized samples, requiring experimental time
the order of a few hours, so that1H MAS methods are partic
ularly well suited to routine spectroscopic investigations in
course of the synthesis of solid-state materials.

In addition to the purely aromatic SQ and DQ signals p
viding insight into the packing and dynamics of the arom
core of HBC-C12, the aliphatic signals arising from the alk
chain substituents can be used to estimate the mobility o
chains and to compare this to the motion of the core. Con
ering the DQ MAS sideband patterns of the aliphatic and
aromatic resonance in the solid phase of HBC-CαD

12 (displayed
in Figs. 64 and 63a, respectively), it is clear that the width of
aliphatic pattern, i.e., the number of sidebands, is much less

that of the aromatic one. This indicates that the dipolar coupl
strength of the aromatic proton pairs is significantly strong
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FIG. 64. 1H DQ MAS sideband pattern of HBC-CαD
12 of the aliphatic1H

SQ resonance at 1.3 ppm for the solid phase atT = 330 K, recorded with a DQ
excitation time ofτexc= 2τR = 57µs under MAS at 35 kHz. The1H Larmor
frequency is 500 MHz. On the right, two calculated DQ MAS patterns of a s
pair are displayed for comparison, the upper resembling a rigid CH2 group and
the lower corresponding to half the CH2 coupling strength.

than that of the CH2 proton pairs in the alkyl chains, althoug
the distance between the latter is only 0.18 nm compare
0.20 nm for the bay protons. Consequently, the dipolar inte
tions among aliphatic chain protons must be subject to motio
averaging processes, while the aromatic core is rigid. This o
ously implies the existence of a mobility gradient along the al
substituents, as has previously been studied for triphenylene
tems by use of2H NMR (69). The overall reduction of the dipola
coupling strengths in the CH2 groups of the chains is of the or
der of 0.5, as can be seen from comparing the experimenta
MAS pattern to spin-pair calculations (see Fig. 64). Howev
the fact that the centerband and the second-order sidebands
about the same intensity in the DQ MAS pattern as the expe
third-order sidebands clearly indicates that the CH2 DQCs are
perturbed by couplings to neighboring protons. Since motio
averaging gives rise to dipolar decoupling and hence help
suppress interpair couplings, the presence of such perturba
in the DQ MAS pattern supports the assumption of almost ri
chain segments, presumably close to the rigid aromatic cor

In the case of HBC-C12, the lack of spectral resolution amon
the CH2 protons does not allow the mobility along the alk
chain to be differentiated. In order to demonstrate the p
sibility of obtaining specific mobility information on distinc
parts of a molecule, we briefly turn to a ring-shaped molec
whose structure is depicted in Fig. 65c and which consist
an alternating sequencefsfs of flexible alkyl chains and stiff
aromatic/aromatic-alkyne chains (108). AboveT ≈ 395 K, this
molecule forms a LC phase, for which the1H one-pulse MAS
spectrum is shown in Fig. 65a. Although the CH2 protons of
the long alkyl chain still cannot be spectrally distinguished fro
each other, many other proton positions are clearly resolve
in particular four different aromatic proton resonances can
assigned. Based on this1H resolution in the SQ dimension,
whole set of different1H DQ MAS sideband patterns (Fig. 65b
can be extracted from a single two-dimensional DQ sp
trum, with each of the patterns providing specific and p
ing
er
cise information about the strengths of the underlying dipo-
lar couplings between the individual proton pairs. Relating the
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FIG. 65. LC phase of a ring-shaped molecule with alternating alipha
and aromatic parts atT = 415 K. (a)1H one-pulse spectrum, recorded at
Larmor frequency of 500 MHz under MAS at 10 kHz. The peaks are assig
as follows (from top): aliphatic chain, alkyne-CH2, OCH3, OCH2CH3, OCH2,
and four aromatic lines. (b)1H DQ MAS sideband patterns of the different S
resonances, recorded withτexc= 4τR under MAS at 10 kHz. (c) Structure of th

molecule, with the reduction factors of the dipolar coupling (as obtained fro
the patterns in b) being assigned to the corresponding positions.
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a
ed

coupling strengths obtained from the DQ patterns of the
phase to the static coupling strengths of each proton pair
sults in a set of reduction factors or, equivalently, order para
eters, each of which corresponds to a specific position in
molecule (see schematical assignment in Fig. 65c). In this w
site-specific mobility information is accessible.

4.3.2. Chain Dynamics in Polymer Melts

Turning from liquid-crystalline materials to melts of linea
aliphatic polymers, we now proceed from relatively ordered
much more mobile systems. On the theoretical side, the
namics of such flexible polymer chains is usually described
statistical approaches, starting from a free Gaussian chain
successively restricting the degrees of mobility by introduc
entanglements (23). However, the site-specific mobility infor
mation obtained from1H DQ MAS investigations of polybu-
tadiene melts has revealed unexpectedly high residual o
parameters (50), as we will briefly outline in the following.

Even well above the glass transition temperatureTg, intense
1H DQ signals are observed in polybutadiene melts. Figure
shows the two-dimensional1H DQ spectrum obtained for a
polybutadiene melt with an average molecular weight ofMW =
130 kg·mol−1 at room temperature, i.e.,T ≈ Tg + 120 K.
Besides the presence of the characteristic pattern of DQ
agonal and cross peaks, it is also clear that the spe
resolution of1H resonances even suffices to identify the sho
ders in the DQ peaks at the olefinic1H SQ resonance arising
from thecisandtransconformation of the butadiene monome
(The sample consisted of polybutadiene chains with a stat
cal 1:1 cis/transsequence.) The olefinic–aliphatic cross pe
is more intense in the case of thetransconformation, because

FIG. 66. 1H DQ MAS spectrum of a polybutadiene melt (MW = 130 kg·
mol−1), recorded atT = 296 K withτexc= 8τR under MAS at 8 kHz applying
the C7 pulse sequence. On the right, the DQ signals at the olefinic1H SQ

mresonance are magnified such that the shoulders arising from thecis andtrans
conformation can be identified.
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FIG. 67. (a) Transandcis conformation of the butadiene monomer. T
dominating intramolecular proton–proton couplings are indicated for both ca
(b)1H DQ buildup curves for a statistical 1:1cis/transpolybutadiene. The spectr
were recorded atT = 223 K, corresponding toTg+50 K, applying theC7 pulse
sequence forτexc= 2 . . .12τR under MAS at 8 kHz. (c) Local order paramete
in the butadiene monomer (1:1cis/transmixture), as obtained from1H buildup
curves.

in trans-butadiene the minimum distance between the invol
protons is much shorter than that incis-butadiene. Conversely, i
the latter conformation, the two olefinic protons are much clo
and therefore the olefinic diagonal peak is stronger at thecisres-
onance. Thecis/transgeometries of butadiene and the resulti
proton–proton proximities are depicted in Fig. 67a.

To extract order parameters, the strengths of the distinct d
lar couplings need to be quantified. This can be accomplis
either by DQ MAS sideband patterns, as has been demonst
in the previous sections, or by DQ buildup curves. In the c
of the polybutadiene melt discussed here, the DQ signals
though clearly present, relatively weak, because, as is expe
for a melt, the underlying dipolar interactions̄D are consider-
ably reduced due to molecular motions. The observation of
MAS sidebands, however, requires DQCs to be excited l
enough to fulfill the conditionD̄τexc/2π > 0.5, which means,
in particular for mobile samples, running the risk of losing sig
due to relaxation. Therefore, a method using short-time exc
tion, i.e., the observation of DQ buildup curves, may turn
to be superior in such cases. The diagram in Fig. 67b disp
the buildup curves of the three DQCs incis/transpolybutadiene,
not differentiating between the two conformations. Relying
the spin-pair approximation and taking the relative number

pairs into account, the ratio between the strengths of the th
different dipolar pair couplings can be derived from fitting th
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three initial slopes with a function of the form given in Eq. [113
in Section 3.4.4. However, in contrast to the MAS sideband p
tern analysis, this approach only yields relative values for
couplings strengths, which need to be calibrated by an abso
value in order to determine order parameters. This calibrat
can, for example, be performed by analyzing the SQ MAS si
band pattern. Following this procedure, the order parame
displayed in Fig. 67c have been obtained (50). The order param-
eter of the C=C double bond can be derived from the interproto
parameters through geometrical relations.

On a relative scale, these experimental results were foun
agree with an RIS (random isomeric states) calculation, but
absolute order parameter of 0.2 for the C=C bond is by about
an order of magnitude higher than theoretically expected.
comparison, nematic liquid crystals are characterized by or
parameters typically around 0.4. (Note that the reduction fac
of about 0.4 determined for the HBC samples in the previo
section is to be multiplied by a factor of 2 before comparing
to the order parameters discussed here.)

In addition to this information about the local mobility o
chain segments in the melt, the time scale of the translatio
motion of polybutadiene chains has been studied by observ
the decrease of the DQ signal intensity when increasing the t
perature and decreasing the chain length. As soon as the c
acteristic time scale of the translational motion becomes sho
than the time required for the DQ experiment, the dipolar int
action tensors can reorient isotropically between the excitat
and the reconversion period. As a consequence of this, the
signal disappears. The results obtained for the motion of po
mers of different chain lengths could be explained on the ba
of a reptation model (43, 23, 50).

In conclusion, the site-specific information about molecu
dynamics, which is uniquely provided by1H DQ MAS spec-
troscopy, has, in the case of polymer dynamics, initiated furt
considerations of order phenomena in polymer melts.

5. SUMMARY AND OUTLOOK

Undoubtedly, fast sample spinning at the magic angle is
key to the wealth of information obtainable from1H NMR spec-
tra in the solid state. Therefore, this review looked first into t
question how a1H multispin system evolves under the combine
action of dipolar couplings and MAS (see Section 2). Consid
ing the time signal observed in a simple one-pulse experime
the following conclusions can be drawn:

• The dipolar interaction is originally a spin-pair type o
coupling. In the course of its action on a spin system,
dipolar-coupled network is built up by the successive form
tion of two-, three-, four-, and higher spin correlations. MA
counteracts this process by weighting theN-spin correlations
with the inverse (N−1)-th power of the MAS frequencyωR. As

ree
e
a consequence of this, MAS suppresses the formation of higher
spin correlations, and the efficiency of this suppression increases
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with the number of spins involved and with the MAS frequen
applied (Section 2.5).
• Based on a perturbation approach combined with Floq

formalism (35), the time signalS(t) of a dipolar-coupled1H
multispin system in a one-pulse MAS experiment can be wri
in the following factorized form (see Eq. [53] and (36)),

S(t) =
∞∑

n=0

InWn(t) exp(inωRt),

with n denoting the sideband order.In and Wn(t) are the in-
tensity and the width, respectively, of thenth order sideband
and exp(inωRt) is the rotor modulation. Essentially, the inte
sity distribution In over the sideband pattern is dominated
two-spin correlations, while three- and higher spin correlati
determine the linewidths. Consequently, to achieve maxim
resolution, MAS only needs to suppress the three-spin cor
tions efficiently, but the MAS frequency doesnotneed to exceed
the dipolar coupling strengths of the dominating two-spin c
relations. In other words, in the fast spinning limit, MAS cuts
dipolar-coupled multispin system down into two-spin syste
which behave inhomogeneously.
• Once the network of dipolar couplings in the1H multi-

spin system is reduced and simplified to two-spin correlatio
distinct dipolar coupling strengths and, in this way, structu
information can be accessed. The MAS sideband pattern
one-pulse MAS spectra, in principle, contain this information
the intensity distributionIn, but it is, in general, unavoidable th
the patterns of different pair couplings superimpose, even if
involved spins are spectrally resolved and distinguishable. B
cally, thespin-specific signal of the one-pulse experiment is n
properly suited to obtainingpair-specific coupling information

A multispin system adopting a state of superimposed t
spin correlations represents, in a sense, a map of the dip
interactions, which merely requires us to apply a suitable te
nique for reading. Appreciating the fundamental role of two-s
correlations, the introduction of1H MQ MAS spectroscopy in
Section 3 begins with identifying a spin state which gives r
to a spin-pair NMR signal.
• Double-quantum coherences (DQC) represent the spe

scopically accessible equivalent of two-spin correlations. T
properties, in particular their chemical shifts, are compose
the properties of the two involved spins (Section 3.1).
• The signal intensityI (AB)

DQ of a DQC between spins o
the typesA and B is, in the limit of short excitation times
proportional to the square of the underlying effective dip
lar coupling strengthDeff and therefore proportional to th
inverse sixth power of the effective internuclear distancereff

(Section 3.2):

(AB) 2 −6

( ∑ −6

)−1/6
IDQ ∝ Deff ∝ reff , wherereff =
i j=AB

ri j .
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Due to the efficient suppression of signal contributions fr
more remote nuclei, the summation may usually be restri
to internuclear distances within the rangeri j ≤ 3

2rmin, starting
from the shortest distancermin (Section 3.4). In standard DQ
experiments under fast MAS, proton–proton distances of u
ri j ≤ 0.35· · ·0.40 nm can, in general, be detected. A further c
sequence arising from this pronounced distance sensitivity i
high precision of internuclear distance determinations from
measurements, which is in most cases better than±0.005 nm.
• In MQ MAS experiments, sidebands arise in the MQ

mension from two distinct mechanisms (Section 3.5): rec
version rotor encoding (RRE) and evolution rotor modulat
(ERM). The rotor encoding of the reconversion gives rise
well-defined patterns, from whose intensity distribution the
derlying coupling strength can be straightforwardly determin
For a spin-pair DQC or a methyl TQC, rotor-modulated evo
tion occurs only if the observed coherence is subject to ex
nal interactions, in particular to dipolar couplings to surrou
ing spins. The ERM sideband patterns, which can moreove
clearly identified in the spectrum by means of their sideb
orders, thus provide quantitative information about the deg
of perturbation. It should be noted that the sensitivity of a MQ
to perturbing external interactions increases with its quan
order.
• From the nested MAS sideband patterns of MQCs, in p

ticular of DQCs, the topology of the dipolar-coupled spin syst
can be derived, resulting in a complete set of distances and a
for systems of up to five spins (Section 3.6).

To provide an overview of the research which has been car
out to date applying very fast MAS and1H MQ MAS methods,
this review has presented several examples, all of which deal
the investigation of phenomena responsible for the inductio
supramolecularor local order, e.g., hydrogen bonds,π–π in-
teractions, or partial alignment of building blocks (Section
In terms of applicability,1H MQ MAS approaches exhibit ma
jor advantages in that they can be performed on as-synthe
samples without being reliant on any kind of isotopic labeling
the availability of single crystals, in contrast to most other NM
and scattering techniques. Moreover, the experiment times
on the order of a few hours and, using MAS rotors of 2.5 m
outer diameter, only about 10 mg of sample is required.
• In the case of hydrogen bonds, the resolution enhancem

afforded by fast MAS permits the exploitation of1H signals
and their chemical shifts in solid-state samples. The reson
positions of the1H signals in one-pulse MAS spectra alrea
provide first evidence for the existence and strength of hyd
gen bonds. Using1H DQ MAS spectroscopy, it is straightfor
ward to identify double and multiple hydrogen bonds and
explore their arrangement, allowing the localization of proto
in hydrogen-bonded systems. In addition, thermodynamic
kinetic parameters for making and breaking processes are
accessible.

• Based on theH spectral resolution achievable by fast MAS,

it could also be demonstrated that, in the solid state, the chemical
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shift of protons can be used as a sensitive probe for surround
π -electron densities. In this way,1H MAS and DQ MAS spec-
tra yield valuable information about the packing of aroma
systems.
• By measuring1H–1H dipolar coupling strengths of spin

pairs or within methyl groups,1H MQ MAS provides detailed
and site-specific insight into molecular order and dynami
e.g., molecular motions in LC phases, reorientation motions
molecular segments, or residual order phenomena in poly
melts.

In the field of dipolar MQ MAS spectroscopy, on-going NMR
methodological development focuses on the extension of M
MAS techniques to heteronuclear spin systems, making us
the spectral resolution characteristic for, e.g.,13C or 15N, the
latter however being again reliant on isotopic enrichment. T
dipolar interaction tensors of heteronuclear spin pairs are,
example, well suited to serving as sensitive and site-spec
probes for molecular motion. Future developments will inclu
the combination of established multidimensional NMR metho
with MQ NMR as well as the exploitation of combined hom
heteronuclear MQCs.
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